
Ron's Indexing Progam
(RIP)

User Manual
by Ronald S. Burkey

Document Mods
03/01/97 RSB: Began
03/10/97 RSB: ... continued.
01/08/02 RSB: Prettified a little for first GPL release.

Table of Contents
Introduction
License
Technical Limitations
Simple Setup
Simple Usage
Advanced Setup
Additional Features
Large Database Management
Technical Theory of Operation
Preparation of Alternate-Language Databases

Introduction

RIP is a program used to maintain and access primarily English-language plaintext-only
databases. The strong suit of RIP is that it can handlevery large databaseswith a minimum of
effort by the user. Databasesof essentiallyunlimited size can be used simply by providing an
adequateamount of massstoragefor them. At present(03/10/97),for example,my own database
is about 1.2G bytes, and increasing in size at over 100M per month.

RIP is an indexing and archiving system. When a text file is enteredinto the RIP database,it is
compressedand indexed. The file can later be browsed or searchedwithout removing it from
the database,but since is it stored in RIP's own format cannot be accessedby other text-based
applications. However, the file can be extracted at a later time and restored exactly to its
original format. After compressionand indexing, a typical 400K text file (the averagesize of a
novel) will occupy about 300K. Smaller files (short stories, for example) are less efficient and
bigger files (the Bible, for example) are more efficient.

Compared to familiar programs, RIP is like a CD-ROM encyclopedia with elements of an
Internet search engine thrown in. The 'entries' in the RIP databaseare text files rather than
encyclopedia articles, but like the encyclopedia, full-text searchescan be performed to find
phraseswhen you don't know what file (article) they occur in. For example,the databasecan be

1 of 14

searched for all files containing 'Albert Einstein', and then those files can be browsed or
extracted. RIP is unlike an encyclopediain that the databasesdealt with can be much larger.
For example,the entire EncyclopaediaBritannica CD-ROM, if the articles were restoredto plain-
text format, would probably be <300M, while lower-end encyclopediassuch as Groliers or
Compton'sare only 1/2 to 1/3 that size. Furthermore,commercialproductssuch as encyclopedias
are only updatedinfrequently, and so can employ very time-consumingprogramsfor producing a
large but very fast index for their products. It is not important to Grolier's, for example, if it
takesa day of computertime to re-index their encyclopedia(since it is only done once a year),
and if the resultantindex is larger than the original text was (since the text didn't come close to
filling up a CD anyhow). Incidentally, I don't know anything about Grolier's procedures,so don't
go around quoting me.

RIP is aimed instead at databasesthat are very large, but still under constant revision (in the
sensethat new text files are added to it) and hence in need of occasionalre-indexing. One
advantageof RIP is that only a relatively small amount of indexing data is saved(about 35% of
the size of the original text data), but this is also its disadvantage: Text searchestake longer
than with an equivalently-sized CD-ROM encyclopedia. Search speed is traded for ease of
update and compactness of index files.

I wrote RIP becausemy hobby is to download etext from the Internet. I have collected
thousandsof files from many sources. There are so many files that I personallydon't even have
enoughtime to make a list of the titles and authors of all the files. That's what's great about
RIP. I don't need to know what I have in my database,becauseRIP can find it even if I don't
know it's there. I can scarf files at will and I don't need to make any effort at all to track
them. Other than the downloading itself, the database requires essentially no maintenance.

RIP presently does not have the capability of 'grading' files for relevance in searching the
databasethe way Internet search engines do, although a limited capability for this could be
added. RIP is not suitable for anything but plaintext: Graphic insertsare not supported;Adobe
Acrobat files (PDF) cannot be used; word-processor,SGML, and HTML file support is spotty at
best. Someday, it would be nice to have full support for HTML, including graphics and links.

Languagesother than English, but which use the latin characterset and don't differ statistically
too drastically from English (such as Latin, French, German, Spanish, Italian) can be used
without much difficulty. But if the languagediffers too much from English, or if the database
consists primarily of the alternate language, the RIP statistical table needs to be altered as
described in the final section below. For example, if 90% of the files are in English and 10% in
French, it's not a problem. If they're all in Greek, transliteratedinto latin characters-- well,
who knows? Try it and see. The programwill certainly continue to work, but the efficiency of
the file compression (which is optimized for English) will suffer.

At present,RIP is a DOS program. It can be under Windows, but is not a Windows program.
Eventually it would be nice to convert it to Windows, to have an attractive browserand to allow
background searches.

2 of 14

License

RIP is copyrightedby Ronald S. Burkey, but is releasedas free softwareunder the GNU General
Public License (GPL), which you can view at www.fsf.org.

Technical Limitations

Maximum text-file size: 512M bytes.
Maximum number of text-files per database partition: 64K.
Maximum number of database partitions: 100.

The theoretical maximum databasesize is therefore512M*64K*100, which is fairly large. The
maximum number of partitions (100) was just chosen out of nowhere, though, and could be
increased with a stroke of a key.

Simple Setup

You must set aside a dedicateddirectory for RIP (called, perhaps,\RIP), in which you will have
the RIP program(RIP.EXE), statistical file (RIP_ALLF.DAT), and probably the RIP masterindex
(RIP.FIL and RIP.IND). You can also put your text files here. Your text files can be put
anywhere,but it is certainly most convenientto put them in a single directory structure(possibly
with subdirectories)containing them and nothing else. For a databaseunder construction(i.e.,
not on a CD), it is probably best just to put all the text files in subdirectoriesof the \RIP
directory. Thus, you might have \RIP\DICKENS for books by CharlesDickens, \RIP\TWAIN for
books by Mark Twain, and so forth. I wouldn't do it this way myself, becauseit's too much
effort to have to classify books by author, but you get the idea. The schemeof classifying by
author (which is somethinga lot of Internet sites do) conflicts with the desire for minimum-effort
of mainenance. A better schemefor my purposeis to classify by source,so that each Internet
site I am in the habit of scarfing files from gets its own subdirectory.

One important point that you can't ignore is that all text files which are candidatesfor inclusion
in a RIP database must have the filename extension '.TXT'.

Creating a RIP database,or adding to an existing one, is a multi-step process, and not a
particularly user-friendly one if you insist on typing out all the commandsyourself, or arranging
your files in some weird way. (But a batch file can be easily set up to do all the work with
just a single command.) That's becausethe way I use the program,adding files by the hundreds,
an interactive user interface would be a nuisance. A DOS command-line interface, in which all
the work can be done by a batch file, is preferable.

If you've arrangedeverything the way I say, and don't want to know how it all works, just skip
down to the final paragraph of this section. If you want more of the details, read on:

3 of 14

The first step is to get a list of all the files you want to add. For some uses,you could just
type in all thesenamesyourself (saving the list, for example,as anotherfile called FILES.LST);
make sure you include full pathnamessuch as 'C:\RIP\TWAIN\TSAWYER.TXT', rather than just
'TSAWYER.TXT'. But if you've organized your files the way I suggested(for example, in
various subdirectories of \RIP), you can make the DOS DIR command do all the work for you:

DIR /S /B \RIP*.TXT >FILES.LST

This finds all the '.TXT' files in all subdirectories of \RIP, and lists them in FILES.LST.

The next step is to compress/index the files:

RIP C <FILES.LST

or you can even avoid creating FILES.LST in the first place by just using

DIR /S /B \RIP*.TXT | RIP C

This step takes every '.TXT' file and replaces it with a file of the samename but the extension
'.RIP'. For example,if you start out with TSAWYER.TXT, you'll end up with TSAWYER.RIP--
and no TSAWYER.TXT. So until you get confident that RIP won't destroy your files, you
might want to make backupcopiesof your TXT files before doing this. I have personallynever
lost a file just relying on RIP, and I no longer make any .TXT backupsmyself. (And besides,I
tell you in advancethat you're doing it at your own risk: I'm not liable for any losses,okay?)
In caseyou're wondering,the needfor replacing*.TXT by *.RIP (as opposedto just having both
types of files presentsimultaneously)was carefully thought out. First, for big databases,it may
be hard to find room for both. Second, if the original TXT file isn't deleted, you will keep
adding it to the database time after time, whenever you update the database.

The '.RIP' files are typically 70% of the original in size, but this varies from file to file.

The final step is to create a 'master index' of all your '.RIP' files:

DIR /S /B \RIP*.RIP | RIP I

This createsfiles called RIP.FIL and RIP.IND. RIP.IND can be quite a large file, but still only
5-10% of the size of your plaintext. The 5% applies to very large databases,and the 10% to
smaller databases. Also, your disk needs3-4 times this as free spaceto createRIP.IND. The
creation process can be time consuming. On a 90 Mhz Pentium, a 300M database
(uncompressed)will take 9 minutes, and the time increasesapproximately linearly with the
databasesize. On the other hand, the time will go down as computersget faster. For this
300M database,the master index might be 20M, and so you'll want to allow 80M of free space
before starting.

As promised,all that uglinesscan be beautified by creating a batch file to do the whole job for
you:

4 of 14

DIR /S /B \RIP*.TXT | RIP C
DIR /S /B \RIP*.RIP | RIP I

Just type the name of the batch file from the DOS prompt, and go drink some coffee while it
works.

Simple Usage

You can interactively search or browse the database, simply by using the command

RIP

This presentsa menu of options, which I won't explain in great detail (since they're reasonably
self-explanatory) but I'll say a few words about each.

There are four basic ways of accessingthe database. Each is a different way of choosinga file,
and then viewing it with the browser. Operationof the browser is very simple, so we might as
well begin with it.

The browser makesevery attempt to display the file just as it would have appearedif typed to
the screenfrom DOS, except that it performs automatic word-wrap. In the DOS version, there
are no adjustmentsyou can make (such as font, text-size, margins, etc.), except that the next
section explains how to configure the text color and backgroundcolor. If you want to use a
really nice browser (such as QREAD), you'll have to extract the file from the database.
Personally,after agonizing over this point a long time, I found to my surprise that with proper
choice of color, a DOS-text browser can be a very comfortable way to read books.

Most of the allowed browser commandsare listed at the top of the browser screen. You can
move up or down, line-by-line (arrow keys) or page-by-page(PgUp, PgDn), or to the beginning
or end of the file (Home, End). You can extract the file from the databaseinto plaintext format
(Alt-S). (The file remains in the database,but an uncompressedversion of it, identical to the
original, is createdin the C:\UNRIP directory.) You can searchfor text (F or S), or for the next
occurrence of a previous search (N). The 'F' text search, simply finds the next occurrence of any
of the words you type in. Thus if you do an 'F'-search for 'albert einstein', it finds the next
occurrenceof either 'albert' or 'einstein', and uses whole words only. The 'S' text-searchis the
more usual kind of thing: it just searchesfor whatever you type in, ignoring case, including
spaces, punctuation, and special characters. You can set a bookmark (B). And that's about it for
the browser, except that various of the menu commands described below (R,+,-) are also
acceptedby the browser. The escapekey gets you out of the browser and back to the main
menu.

As I said before, the main menu simply provides alternate ways of chosing the files to be
browsed.

5 of 14

The simplest (and surprisingly quite useful) method is the random selection (R). This just
choosesa random file and jumps to a random point in it. The random jump is similar to
browsing in an actual library of books, where you just wander around and pick up anything that
looks interesting. This is the feature that's missing from the vast etext reserveof the Internet.
The book you want might be out there, but you need to know the name or author. You can't
just browse through books at random: Randomly browsing web sites is much easier than
randomly browsing the books contained in them.

The bookmark command (B) returns you to the last bookmark you've set. Or, if like me you are
reading severalbooks simultaneously,the '0'-'9' keys take you to any of the last 10 bookmarks
you've set. '0' is the earliest bookmark, '1' the next earliest, and so on.

The file command(F) takes you to a specific filename. You don't need the full path, just the
name. For example, to read d:\rip\twain\tsawyer.rip, you would just enter 'tsawyer'.

The searchcommand(S) searchesthe databasefor specific text. The systemdoesn'tsearchfor
exact phrases,but rather for words in proximity. For example,if you searchfor 'albert einstein'
(note the case insensitivity), RIP doesn'tsearchfor exactly this phrase,but rather for the words
'albert' and 'einstein' appearingwithin a few lines of each other. The program ignores common
words such as 'a', 'me', 'the', etc. (You can type them in, but they won't affect the search.) For
the most part, you can assumethat all words of 4 charactersor more affect the search,while
shorter words do not. There are some exceptions. All words containing the letters 'J', 'Q', 'X',
or 'Z' affect the search, regardlessof length. Thus, if you search for 'the wizard of oz', the
words 'the' and 'of' will be ignored, wherease'wizard' and 'oz' are searchedfor. Unfortunately,
this makes it impossible to search the databasefor phraseslike 'to be or not to be,' in which
every word is discarded, even though the entire phrase is very distinctive.

I will undoubtedly add more sophisticatedchecking over the course of time, but that's how it
works now.

An 'S'-searchof the databasewill typically find quite a few files matching the searchcriterion.
As it finds eachfile, it pops it into the browser. You can then proceedto the next file with the
'+' command,or to the prior file with the '-' command. The 'S'-searchfrom the main menu
locatesmatching files by a processof successiverefinement. First it examinesthe masterindex,
to eliminate most files from the search. Then it examinesthe remaining candidatesone by one,
first checking the index information embeddedin the file itself, and then proceedingto an actual
textual examination. The file does not appear in the browser until having passed all these tests.

Advanced Setup

Two optional files are used to modify the operationof RIP somewhat. RIP.CFG configuresthe
browser. RIP.LST configures the database.

6 of 14

The only characteristicof the browser that can currently be altered is the set of screencolors.

To set the background/foregroundcolors for the main menu, the browser commandbar, and the
browser text, RIP.CFG would contain lines of this kind:

BCK_MENU=color (color of main-menu background)
CLR_MENU=color (color of main-menu foreground)
BCK_COMMAND=color (color of browser command-bar background)
CLR_COMMAND=color (color of browser command-bar foreground)
BCK_TEXT=color (color of browser text background)
CLR_TEXT=color (color of browser text foreground)

The colors are the usual allowed IBM PC colors 0-15:

0 BLACK
1 BLUE
2 GREEN
3 CYAN
4 RED
5 MAGENTA
6 BROWN
7 LIGHTGRAY
8 DARKGRAY
9 LIGHTBLUE
10 LIGHTGREEN
11 LIGHTCYAN
12 LIGHTRED
13 LIGHTMAGENTA
14 YELLOW
15 WHITE

You have to use the numbers,and not the words; for example, 'CLR_MENU=15'. Also, you
should generally use only 0-7, since otherwise there will be no difference betweenhighlighted
and non-highlightedareas. By default, for text I use a black backgroundwith brown foreground.
This seems a bit odd at first, but I find that it makes for very relaxing reading.

RIP.LST can be used to configure how the database is partitioned.

It is sometimesconvenient to partition the databaseinto smaller databases(for example, if the
databaseis stored on CD, each CD might be one partition of the database)and to have a
separatemaster index for each partition. Another reasonto do this is that there is an absolute
limit of 64K files per partition, so if you surpass64K total files, you will need to partition the
database. RIP.LST is primarily a master list of thesepartitions, with one line for eachpartition.
In its simplest form, each record just is the base name of the master index for the partition.
When the master index is generated,it is always called RIP.FIL/RIP.IND (so the basenameis
'RIP'), but if there are separatepartitions, the master indices clearly need to be renamedor at

7 of 14

least stored in separatedirectories. For example,if we copied all the indices (*.FIL and *.IND)
into a single directory and called them VOL1.FIL/VOL1.IND, VOL2.FIL/VOL2.IND, ..., we could
simply have a RIP.LST like this:

VOL1
VOL2
.
.
.

The databases would be searched in the order shown.

More typically, the different partitions might be on CD's (or one on hard disk, and one on each
CD.) A couple of difficulties arise in this case. First, some earlier versions of RIP used a
masterindex namedRIP.FIL/RIP2.IND (rather than RIP.FIL/RIP.IND) and once committed to CD
cannot be renamed. To add the "2" to the IND-file name, we put a second field of "*" in
RIP.LST:

C:\RIP\RIP
D:RIP *

In this example,there are two partitions: C:\RIP\RIP.FIL and C:\RIP\RIP.IND on hard disk, and
D:RIP.FIL/D:RIP2.IND on CD.

Another difficulty is that the drive designatorsin CD-basedmaster indices are generally wrong.
The RIP.FIL file contains a list of all the text (.RIP) files in the database,by full pathname.
But since the CDs are moved from computerto computer,thesewon't always be accurate. Thus,
RIP.FIL on a given CD might give a filename as D:\TWAIN\TSAWYER.RIP, becauseon the
computer used to generatethe database,D: was the CD-ROM. But if the CD is moved to a
computerin which the CD-ROM is E:, then the systemwon't be able to locate the file. Or for
that matter, if (for speed)the master index was generatedwhile the databasewas on hard disk
and then merely copied later to the CD, even the beginning part of the pathnamecould be
wrong. For example,RIP.FIL might give the filename as C:\RIP\TWAIN\TSAWYER.RIP. This
can be handled by adding a couple of separate fields to RIP.LST:

RIP
D:RIP * C:\RIP D:

This would simply replace C:\RIP by D: in the leading positions of the filenames found in
E:RIP.FIL.

8 of 14

Additional Features

We have already discussed file compression ('RIP C'), master-index creation ('RIP I'), and
interactive search/browsing('RIP'). The RIP program also has the following command-line
functions:

'RIP D': File extraction. This is the oppositeof 'RIP C', taking a .RIP file and replacingit with
a .TXT file. The command-line syntax is identical for the two:

RIP D <filelist

'RIP T': Test the database. This checks the integrity of .RIP files:

RIP T <filelist

'RIP %': This gives you the compressionstatistics for your .RIP files (that is, compressedsize
versusuncompressedsize), including a summary for the databaseas a whole. The compression
ratio is much worse than for a program such as PKZIP; the reason is that the text data is
compressedreasonablyefficiently (to about 40% of its original size), but then index data is added
to the file (about 30%), so the overall compressionis usually around30% (meaningthat the .RIP
file is about 70% the size of the .TXT file).

RIP % <filelist

'RIP n' ('n' being a number, such as 20): Extract file header. What this does is to uncompress
the first 'n' lines of the .RIP file. This is useful for producinga summaryof the database,since
the titles and authorsof the files are generallymentionedsomewherein the first few lines of the
file:

RIP n <filelist >summary.TXT

'RIP H': Hashcodecomputation: This is an interactivemode useful only for programdebugging.
It can compute the 'hashcode'for any given word. See the technical theory section below if
you're interested in what this means.

Large Database Management

I will illustrate the use of RIP in maintaining a large database by describing my own application.

I collect etext files from the Internet. Generally, you can think of each file as being a 'book'.
The averagefile size is 300-400K, though some files are as short as just a few K, and others
are around 10M. The Bible (a very long book indeed) is 4.5M.

9 of 14

While existing books in the databaseare sometimesrevised, usually the only processby which
the databaseis modified is the addition new books. I have to guard a little againstduplication
(since once a book is on the Internet it often migrates to several sites), but this isn't a big
problem, particularly if you collect files primarily from a single source, such as Project
Gutenberg, EWTN, Project Perseus, etc.

Initially, books are collected on hard disk. But as the databasegrows, it eventually becomes
convenient to free up some disk spaceby partitioning the databaseinto two parts and placing
part of it on CD. If the database continues to grow, it is partitioned into three parts (two on CD
and one on disk), and so on. Basically, therefore,you monitor the size of the hard-disk portion
of the databaseuntil it reachesa good CD-size (such as 600-650M), and then just make a CD
with it, clear the .RIP files off of the hard disk, make a new partition in RIP.LST, and start
collecting more files in the (now-empty) hard-disk partition.

Helpful Hint: In really large databases,when you are simply trying to find a specific book by
title or author, a free-form search of the entire databaseis a hassle. It would be more
convenientto just searcha title/author list. Of course,in a no-maintenanceapproach,there is no
such thing. (You could, of course,createone manually.) However, the "RIP n" commandcan
be used to generatea masterlist of the beginnings(say, the first 20 lines) of all the files, and if
this master list itself is treated just like any old text file (i.e., compressedand indexed), and is
the very first file in the first index, then the systemwill be able to completetitle/author searches
much quicker, since we are guaranteedthat most titles and authors are in the first first file
searched. This allows the user to determinethe desiredfilename, and from there to fetch it with
the 'F' command rather than the 'S' command.

Technical Theory of Operation

The RIP system performs two basically independent functions. First, it provides a file-
compressionservice. Second, it provides an index/searchservice. There is little necessary
relation betweentheseservices,in that either servicecould be provided in a different way (or not
at all), and therefore they will be discussed separately.

Compression.

The file-compressionability of RIP is inferior to that of a programsuch as PKZIP or GZIP, and
so one might wonder why this capability is present,merely than relying on thesefine programs.
The reason is that PKZIP, GZIP, and all other really fine compressionutilities are file-based
rather than block-based. By this I mean that once the file is compressed(for example, with
PKUNZIP), it is necessaryto uncompressthe entire file before it can be accessed;if you just
want to get a certain paragraphfrom the file, you are out of luck. However, the RIP system
requires the ability to fetches random sections of files without the enormous speed penalty
implied by the need to uncompressthe entire file. This is why we provide our own compression
algorithm.

10 of 14

To provide this block-addressablecapability, the systemdivides the original text-file (.TXT) into
fixed-size blocks of 8K bytes. Near the beginning of the output .RIP file is a table of pointers
to thesecompresseddatablocks. The compressionitself is a context-sensitive(but not adaptive)
Huffman compression. An adaptive method is not used becausethe block size is too small to
allow an adaptive algorithm enough time to adapt. Instead,a pre-analysisof 'typical' english-
languagetext was performed to determine the frequency of occurrenceof each ASCII symbol
under the following conditions: following the letter 'A', following the letter 'B', ..., following the
letter 'Z', following a digit, following punctuation('.', ',', ';', ':', '?', or '!'), or following any other
symbol. Using these29 separatesets of frequencies,29 separateHuffman codeswere generated,
and stored in the file RIP_ALLF.DAT (which must be present for RIP to function). Compression
is a straightforwardreplacementof charactersby the appropriatecontext-sensitiveHuffman code,
except that the context is reset to 'other' at the beginning of each 8K block. In other words,
supposethe string 'the quality of mercy' was being compressed. Consider the word 'quality'.
The Huffman code for 'q' is taken from the 'other' context, that for 'u' is taken from the
'following-Q' context, that for 'a' is taken from the 'following-U' context, and so on. I find that
the trick of using context-sensitiveHuffman codes gives me about an extra 10% compression
over using just a plain Huffman code.

For english-languagetext, this achieves a compressionratio (compressedtext about 40% of
uncompressed)close to that of an adaptive algorithm, though still slightly inferior. For some
datasets,such as long strings of digits, the file is actually enlarged, since the frequenciesof
occurrenceof each characterare so different from that of typical text. For intermediatecases,
such as other languages(French, German, etc.) the system is still workable but compression
efficiency is reduced.

Indexing a file .

Although indexing a file has a number of subtleties,conceptuallyit works as follows. Each 8K
block of text in the file is analyzed,and a list of all unique words in the block is compiled.
(For example,even if the word 'centennial'appears7 times in the block, it will only appearon
the list once. After the entire file is analyzed,we have a list of blocks, and for each block, a
list of the unique words in the block. This list is then re-sortedso that it is a list, by word, of
which blocks the word appearsin. This re-sorted list, the 'index', is then appendedto the
compressed text data.

Conceptually,therefore,to determineif a phraseis in the file, we first check the index for each
word in the phrase we are searchingfor. For example, supposewe are searchingfor 'albert
einstein'. We look up the index entry for 'albert'. If there is no entry (i.e., if no 8K blocks
contained'albert') then the phrasedoesn'tappearin the file. Otherwise,we fetch the list of all
blocks containing 'albert'. Then we look up the index entry for 'einstein'. Again, if there are no
blocks containing 'einstein',then the phrase'albert einstein'certainly doesn'tappearin the file. If
some blocks do contain 'einstein', we fetch the list of blocks. We then comparethe block-list
for 'albert' againstthat for 'einstein'. If there is no overlap, then 'albert einstein'doesn'tappearin
the file. If there is overlap, it doesn'tmean that the phraseappears,just that both words are in
the same8K block. At that point, we uncompressjust that block and do a regular text search
on it to see if the phraseactually appears. At present,we don't really do a text search,but just

11 of 14

check to make sure that the individual words all appear within 100 charactersor so of each
other. Thus, we find 'albert einstein' or 'einstein albert' or 'einstein was named albert', etc.

As I said, though, there are some subleties. For one thing, in creating the list of unique words,
we ignore case. For another, we count any set of contiguous charactersas a word. Thus,
'einstein's' is treated as a word, and is not identical to 'einstein'.

Another point is that we need to guard against the case in which the phrase 'albert einstein' spans
two blocks. For example,'albert' might be the last word in one 8K block, and 'einstein' the first
word in the next. We take care of this by enlarging the 8K blocks slightly so that they overlap.
(This is done only for indexing, and not for compression.)

Also, it is very difficult in practice to actually deal with 'words' and 'unique words'. It is rather
simple to do for small files, but large files such as the Bible contain enormousnumbers of
unique words. Severalhundredthousandunique words exist in the english languageas a whole,
and even fitting this list into the memory of most current computers(under DOS, anhow) is a
daunting task, not to mention the enormousamount of CPU time neededto maintain and enlarge
this list during the indexing process. Even the data structuresneededfor this task tend to be
inefficient, primarily because not all words have the same numbers of characters in them.

Becauseof this, we don't actually compile lists of unique words, nor index by word as I have
beensaying. Insteadof the words themselves,we actually generatehashcodesand work with the
hashcodesinstead of the words. The hashcodeis a 4-byte number generatedfrom the ASCII
codesof the words by a numericalprocess. There are approximately4 billion possiblehashcodes
and only a few hundredthousandwords in the language,so the intention is that there should be
very little duplication by the hashcodealgorithm. In other words, there should be few distinct
words that generatethe samehashcode. (We can tolerate some duplication, since the final step
of every searchis actually a full-text comparison.) Thus, every place I have spokenof 'words'
above, I really meant 'hashcodes of words'.

Even with hashcodesinsteadof words, somestepsof the indexing processare difficult to handle.
Considerthe Bible, for example. This is a 4.5M (uncompressed)file of nearly a million 'words'.
The file will consist of about 560 8K-blocks. An 8K-block will contain a little over 1000
words, of which we may supposethat 500 of the words are unique (unique within the block, that
is). Each unique word is assigned a 4-byte hashcode. Therefore, the index alone is
560*500*4=1.12M in size. As we casually noted above, this index must be re-sorted to give a
list of blocks by word rather than words by block. This can't be done entirely in memory, since
the index itself doesn'teven fit in memory! And even if it could be handledin memory (by use
of extendedmemory, for example),we couldn't guaranteethat it would fit into memory on every
computer. Therefore,disk-basedexternal sorting routines have been developedthat don't require
the index to be in memory. The sorting routine, a mergesort,has a running time proportional to
N log N, where N is the filesize.

The entire point of the re-sorting step is to keep us (during the searchprocess)from having to
examinethe entire index (which is nearly half the .RIP-file size). Instead,we can do a binary
search on the index to isolate those parts of it pertaining just to relevant words, and then

12 of 14

examining only that part of the index. A binary searchcan't be performeddirectly on the index
as describedabove, though, since the records for each word are not the same length. (The
record for each word is a list of blocks in which the word appears, and this clearly varies in size
word by word.) Fixed-length recordsare necessaryfor a binary search. Therefore,to the index
as already describedwe appenda table of pointers to the records. Each entry in this pointer
table consistsof the hashcodeof the word, along with a pointer into the index. Since these
records are of fixed length, during the searchprocesswe can perform a binary searchon the
pointer table, and thereby determine which parts of the index to load and examine.

Master index .

The master index (RIP.IND) is just like the indices of the .RIP files, except that it gives the
unique words by file rather than by block. Each file in the databasepartition is numbered,0-
65535, and RIP.FIL is used to relate the filenames to the numbers. However, the structure of
RIP.IND and algorithms used to search RIP.IND are just like those of the indices to the
individual RIP files.

The master index for a CD-sized databasepartition is about 30M, so all the commentsabove
about the difficulty of sorting this file in-memory apply 30-fold.

Preparation of Alternate-Language Databases

As mentioned earlier, if the statistical character of the charactersin the text of the database
differs significantly from that of 'typical' English, you will want to use a set of Huffman codes
tailored to the particular languageyou are using. This entails replacing the RIP_ALLF.DAT file
with a different file. In doing so, any new .RIP files you generatewill be incompatible with
standardfiles, and hencewill be unreadableusing a standardRIP_ALLF.DAT file. Similarly, if
you already have some .RIP files, they will be unreadable with your new RIP_ALLF.DAT file.

You don't actually have to generate a new RIP_ALLF.DAT file, but rather files called

RIP_A.DAT
.
.
.
RIP_Z.DAT
RIPDIGIT.DAT
RIPPUNCT.DAT
RIPOTHER.DAT

Thesefiles will contain the Huffman codesfor the various contexts. (They are in ASCII format,
so on the off-chance you're interested, you can actually read them.)

13 of 14

Eraseyour existing RIP_ALLF.DAT file. The first time you run RIP after that, it will load the
other *.DAT files (RIP_A.DAT etc.) and combine them to produce a new RIP_ALLF.DAT file
(which is simply a much more compact form of the other files). You can then delete all the
*.DAT files except RIP_ALLF.DAT.

How do you produce the *.DAT files? You use the HUFFMAN1 program. First, you have to
produce a large ASCII file of typical text in your language. Each charactermust consist of
single-byte codes. Two-byte charactercodescannotbe used. Make the file as large as you can,
and don't just choosea single work. Combine a bunch of works to createthe pattern file. The
HUFFMAN1 program must then be run 29 times, once for each context (i.e., once for
RIP_A.DAT, once for RIP_B.DAT, and so on).

14 of 14

