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Preface

The present book is intended, as far as pos-
sible, to give an exact insight into the the-
ory of Relativity to those readers who, from
a general scientific and philosophical point of
view, are interested in the theory, but who are
not conversant with the mathematical appa-
ratus1 of theoretical physics. The work pre-
sumes a standard of education corresponding
to that of a university matriculation examina-
tion, and, despite the shortness of the book,
a fair amount of patience and force of will on
the part of the reader. The author has spared

1The mathematical fundaments of the special theory
of relativity are to be found in the original papers of H.
A. Lorentz, A. Einstein, H. Minkowski published un-
der the title Das Relativitäts-prinzip (The Principle of
Relativity) in B. G. Teubner’s collection of monographs
Fortschritte der mathematischen Wissenschaften (Ad-
vances in the Mathematical Sciences), also in M. Laue’s
exhaustive book Das Relativitäts prinzip—published
by Friedr. Vieweg & Son, Braunschweig. The general
theory of relativity, together with the necessary parts
of the theory of invariants, is dealt with in the author’s
book Die Grundlagen der allgemeinen Relativitätstheo-
rie (The Foundations of the General Theory of Relativ-
ity)—Joh. Ambr. Barth, 1916; this book assumes some
familiarity with the special theory of relativity.
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vi Relativity

himself no pains in his endeavour to present
the main ideas in the simplest and most in-
telligible form, and on the whole, in the se-
quence and connection in which they actually
originated. In the interest of clearness, it ap-
peared to me inevitable that I should repeat
myself frequently, without paying the slight-
est attention to the elegance of the presenta-
tion. I adhered scrupulously to the precept of
that brilliant theoretical physicist, L. Boltz-
mann, according to whom matters of elegance
ought to be left to the tailor and to the cobbler.
I make no pretence of having withheld from
the reader difficulties which are inherent to
the subject. On the other hand, I have pur-
posely treated the empirical physical founda-
tions of the theory in a “step-motherly” fash-
ion, so that readers unfamiliar with physics
may not feel like the wanderer who was un-
able to see the forest for trees. May the book
bring some one a few happy hours of sugges-
tive thought!

A. EINSTEIN
DECEMBER, 1916

NOTE TO THE THIRD EDI-
TION
In the present year (1918) an excellent and
detailed manual on the general theory of rel-
ativity, written by H. Weyl, was published
by the firm Julius Springer (Berlin). This
book, entitled Raum—Zeit—Materie (Space—
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Time—Matter), may be warmly recommended
to mathematicians and physicists.
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Biographical Note

Albert Einstein is the son of German-Jewish
parents. He was born in 1879 in the town of
Ulm, Würtemberg, Germany. His schooldays
were spent in Munich, where he attended
the Gymnasium until his sixteenth year. Af-
ter leaving school at Munich, he accompanied
his parents to Milan, whence he proceeded to
Switzerland six months later to continue his
studies.

From 1896 to 1900 Albert Einstein stud-
ied mathematics and physics at the Technical
High School in Zurich, as he intended becom-
ing a secondary school (Gymnasium) teacher.
For some time afterwards he was a private
tutor, and having meanwhile become natu-
ralised, he obtained a post as engineer in
the Swiss Patent Office in 1902, which posi-
tion he occupied till 1909. The main ideas
involved in the most important of Einstein’s
theories date back to this period. Amongst
these may be mentioned: The Special The-
ory of Relativity, Inertia of Energy, Theory of
the Brownian Movement, and the Quantum-
Law of the Emission and Absorption of Light
(1905). These were followed some years later
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by the Theory of the Specific Heat of Solid
Bodies, and the fundamental idea of the Gen-
eral Theory of Relativity.

During the intervel 1909 to 1911 he oc-
cupied the post of Professor Extraordinarius
at the University of Prague, Bohemia, where
he remained as Professor Ordinarius until
1912. In the latter year Professor Einstein ac-
cepted a similar chair at the Polytechnikum,
Zurich, and continued his activities there un-
til 1914, when he received a call to the Prus-
sian Academy of Science, Berlin, as successor
to Van’t Hoff. Professor Einstein is able to de-
vote himself freely to his studies at the Berlin
Academy, and it was here that he succeeded in
completing his work on the General Theory of
Relativity (1915-17). Professor Einstein also
lectures on various special branches of physics
at the University of Berlin, and, in addition,
he is Director of the Institute for Physical Re-
search of the Kaiser Wilhelm Gesellschaft.

Professor Einstein has been twice married.
His first wife, whom he married at Berne in
1903, was a fellow-student from Serbia. There
were two sons of this marriage, both of whom
are living in Zurich, the elder being sixteen
years of age. Recently Professor Einstein mar-
ried a widowed cousin, with whom he is now
living in Berlin.

R. W. L.



Translator’s Note

In presenting this translation to the English-
reading public, it is hardly necessary for me
to enlarge on the Author’s prefatory remarks,
except to draw attention to those additions to
the book which do not appear in the original.

At my request, Professor Einstein kindly
supplied me with a portrait of himself, by
one of Germany’s most celebrated artists. Ap-
pendix III, on “The Experimental Confirma-
tion of the General Theory of Relativity,” has
been written specially for this translation.
Apart from these valuable additions to the
book, I have included a biographical note on
the Author, and, at the end of the book, an In-
dex and a list of English references to the sub-
ject. This list, which is more suggestive than
exhaustive, is intended as a guide to those
readers who wish to pursue the subject far-
ther.

I desire to tender my best thanks to my col-
leagues Professor S. R. Milner, D.Sc., and Mr.
W. E. Curtis, A.R.C.Sc., F.R.A.S., also to my
friend Dr. Arthur Holmes, A.R.C.SC., F.G.S.,
of the Imperial College, for their kindness in
reading through the manuscript, for helpful
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criticism, and for numerous suggestions. I
owe an expression of thanks also to Messrs.
Methuen for their ready counsel and advice,
and for the care they have bestowed on the
work during the course of its publication.

ROBERT W. LAWSON
THE PHYSICS LABORATORY

THE UNIVERSITY OF SHEFFIELD
JUNE 12, 1920



Part I: The Special
Theory of
Relativity

1





I. Physical
Meaning of
Geometrical
Propositions

In your schooldays most of you who read this
book made acquaintance with the noble build-
ing of Euclid’s geometry, and you remember—
perhaps with more respect than love—the
magnificent structure, on the lofty staircase
of which you were chased about for uncounted
hours by conscientious teachers. By reason of
your past experience, you would certainly re-
gard every one with disdain who should pro-
nounce even the most out-of-the-way proposi-
tion of this science to be untrue. But perhaps
this feeling of proud certainty would leave
you immediately if some one were to ask you:
“What, then, do you mean by the assertion
that these propositions are true?” Let us pro-
ceed to give this question a little considera-
tion.

Geometry sets out from certain concep-
tions such as “plane,” “point,” and “straight

3
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line,” with which we are able to associate more
or less definite ideas, and from certain sim-
ple propositions (axioms) which, in virtue of
these ideas, we are inclined to accept as “true.”
Then, on the basis of a logical process, the
justification of which we feel ourselves com-
pelled to admit, all remaining propositions
are shown to follow from those axioms, i.e.
they are proven. A proposition is then correct
(“true”) when it has been derived in the recog-
nised manner from the axioms. The ques-
tion of the “truth” of the individual geomet-
rical propositions is thus reduced to one of the
“truth” of the axioms. Now it has long been
known that the last question is not only unan-
swerable by the methods of geometry, but that
it is in itself entirely without meaning. We
cannot ask whether it is true that only one
straight line goes through two points. We can
only say that Euclidean geometry deals with
things called “straight line,” to each of which
is ascribed the property of being uniquely de-
termined by two points situated on it. The
concept “true” does not tally with the asser-
tions of pure geometry, because by the word
“true” we are eventually in the habit of des-
ignating always the correspondence with a
“real” object; geometry, however, is not con-
cerned with the relation of the ideas involved
in it to objects of experience, but only with the
logical connection of these ideas among them-
selves.

It is not difficult to understand why, in
spite of this, we feel constrained to call the
propositions of geometry “true.” Geometrical
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ideas correspond to more or less exact objects
in nature, and these last are undoubtedly the
exclusive cause of the genesis of those ideas.
Geometry ought to refrain from such a course,
in order to give to its structure the largest pos-
sible logical unity. The practice, for example,
of seeing in a “distance” two marked positions
on a practically rigid body is something which
is lodged deeply in our habit of thought. We
are accustomed further to regard three points
as being situated on a straight line, if their
apparent positions can be made to coincide
for observation with one eye, under suitable
choice of our place of observation.

If, in pursuance of our habit of thought,
we now supplement the propositions of Eu-
clidean geometry by the single proposition
that two points on a practically rigid body al-
ways correspond to the same distance (line-
interval), independently of any changes in po-
sition to which we may subject the body, the
propositions of Euclidean geometry then re-
solve themselves into propositions on the pos-
sible relative position of practically rigid bod-
ies.2 Geometry which has been supplemented
in this way is then to be treated as a branch
of physics. We can now legitimately ask as
to the “truth” of geometrical propositions in-
terpreted in this way, since we are justified

2It follows that a natural object is associated also
with a straight line. Three points A, B and C on a rigid
body thus lie in a straight when, the points A and C
being given, B is chosen such that the sum of the dis-
tances AB and BC is as short as possible. This incom-
plete suggestion will suffice for our present purpose.
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in asking whether these propositions are sat-
isfied for those real things we have associ-
ated with the geometrical ideas. In less ex-
act terms we can express this by saying that
by the “truth” of a geometrical proposition in
this sense we understand its validity for a con-
struction with ruler and compasses.

Of course the conviction of the “truth”
of geometrical propositions in this sense is
founded exclusively on rather incomplete ex-
perience. For the present we shall assume the
“truth” of the geometrical propositions, then
at a later stage (in the general theory of rela-
tivity) we shall see that this “truth” is limited,
and we shall consider the extent of its limita-
tion.



II. The System of
Co-ordinates

On the basis of the physical interpretation of
distance which has been indicated, we are also
in a position to establish the distance between
two points on a rigid body by means of mea-
surements. For this purpose we require a “dis-
tance” (rod S) which is to be used once and for
all, and which we employ as a standard mea-
sure. If, now, A and B are two points on a
rigid body, we can construct the line joining
them according to the rules of geometry; then,
starting from A, we can mark off the distance
S time after time until we reach B. The num-
ber of these operations required is the numer-
ical measure of the distance AB. This is the
basis of all measurement of length.3

Every description of the scene of an event
or of the position of an object in space is based
on the specification of the point on a rigid body

3Here we have assumed that there is nothing left
over, i.e. that the measurement gives a whole num-
ber. This difficulty is got over by the use of divided
measuring-rods, the introduction of which does not de-
mand any fundamentally new method.

7
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(body of reference) with which that event or
object coincides. This applies not only to sci-
entific description, but also to everyday life.
If I analyse the place specification “Trafal-
gar Square, London,”4 I arrive at the follow-
ing result. The earth is the rigid body to
which the specification of place refers; “Trafal-
gar Square, London” is a well-defined point,
to which a name has been assigned, and with
which the event coincides in space.5

This primitive method of place specifica-
tion deals only with places on the surface of
rigid bodies, and is dependent on the exis-
tence of points on this surface which are dis-
tinguishable from each other. But we can free
ourselves from both of these limitations with-
out altering the nature of our specification of
position. If, for instance, a cloud is hover-
ing over Trafalgar Square, then we can deter-
mine its position relative to the surface of the
earth by erecting a pole perpendicularly on
the Square, so that it reaches the cloud. The
length of the pole measured with the standard
measuring-rod, combined with the specifica-
tion of the position of the foot of the pole, sup-
plies us with a complete place specification.
On the basis of this illustration, we are able

4I have chosen this as being more familiar to the En-
glish reader than the “Potsdamer Platz, Berlin,” which
is referred to in the original. (R. W. L.)

5It is not necessary here to investigate further the
significance of the expression “coincidence in space.”
This conception is sufficiently obvious to ensure that
differences of opinion are scarcely likely to arise as to
its applicability in practice.



The System of Co-ordinates 9

to see the manner in which a refinement of
the conception of position has been developed.

(a) We imagine the rigid body, to which the
place specification is referred, supplemented
in such a manner that the object whose posi-
tion we require is reached by the completed
rigid body.

(b) In locating the position of the object,
we make use of a number (here the length
of the pole measured with the measuring-rod)
instead of designated points of reference.

(c) We speak of the height of the cloud even
when the pole which reaches the cloud has
not been erected. By means of optical obser-
vations of the cloud from different positions
on the ground, and taking into account the
properties of the propagation of light, we de-
termine the length of the pole we should have
required in order to reach the cloud.

From this consideration we see that it will
be advantageous if, in the description of posi-
tion, it should be possible by means of numer-
ical measures to make ourselves independent
of the existence of marked positions (possess-
ing names) on the rigid body of reference. In
the physics of measurement this is attained
by the application of the Cartesian system of
co-ordinates.

This consists of three plane surfaces per-
pendicular to each other and rigidly attached
to a rigid body. Referred to a system of co-
ordinates, the scene of any event will be de-
termined (for the main part) by the specifica-
tion of the lengths of the three perpendiculars
or co-ordinates (x, y, z) which can be dropped



10 Relativity

from the scene of the event to those three
plane surfaces. The lengths of these three per-
pendiculars can be determined by a series of
manipulations with rigid measuring-rods per-
formed according to the rules and methods
laid down by Euclidean geometry.

In practice, the rigid surfaces which consti-
tute the system of co-ordinates are generally
not available; furthermore, the magnitudes of
the co-ordinates are not actually determined
by constructions with rigid rods, but by indi-
rect means. If the results of physics and as-
tronomy are to maintain their clearness, the
physical meaning of specifications of position
must always be sought in accordance with the
above considerations.6

We thus obtain the following result: Every
description of events in space involves the use
of a rigid body to which such events have to
be referred. The resulting relationship takes
for granted that the laws of Euclidean geom-
etry hold for “distances,” the “distance” being
represented physically by means of the con-
vention of two marks on a rigid body.

6A refinement and modification of these views does
not become necessary until we come to deal with the
general theory of relativity, treated in the second part
of this book.



III. Space and Time
in Classical
Mechanics

“The purpose of mechanics is to describe how
bodies change their position in space with
time.” I should load my conscience with grave
sins against the sacred spirit of lucidity were
I to formulate the aims of mechanics in this
way, without serious reflection and detailed
explanations. Let us proceed to disclose these
sins.

It is not clear what is to be understood
here by “position” and “space.” I stand at the
window of a railway carriage which is travel-
ling uniformly, and drop a stone on the em-
bankment, without throwing it. Then, dis-
regarding the influence of the air resistance,
I see the stone descend in a straight line.
A pedestrian who observes the misdeed from
the footpath notices that the stone falls to
earth in a parabolic curve. I now ask: Do
the “positions” traversed by the stone lie “in
reality” on a straight line or on a parabola?
Moreover, what is meant here by motion “in

11
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space”? From the considerations of the previ-
ous section the answer is self-evident. In the
first place, we entirely shun the vague word
“space,” of which, we must honestly acknowl-
edge, we cannot form the slightest conception,
and we replace it by “motion relative to a prac-
tically rigid body of reference.” The positions
relative to the body of reference (railway car-
riage or embankment) have already been de-
fined in detail in the preceding section. If
instead of “body of reference” we insert “sys-
tem of co-ordinates,” which is a useful idea for
mathematical description, we are in a posi-
tion to say: The stone traverses a straight line
relative to a system of co-ordinates rigidly at-
tached to the carriage, but relative to a system
of co-ordinates rigidly attached to the ground
(embankment) it describes a parabola. With
the aid of this example it is clearly seen that
there is no such thing as an independently ex-
isting trajectory (lit. “path-curve”7), but only a
trajectory relative to a particular body of ref-
erence.

In order to have a complete description of
the motion, we must specify how the body
alters its position with time; i.e. for every
point on the trajectory it must be stated at
what time the body is situated there. These
data must be supplemented by such a defi-
nition of time that, in virtue of this defini-
tion, these time-values can be regarded es-
sentially as magnitudes (results of measure-
ments) capable of observation. If we take our

7That is, a curve along which the body moves.
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stand on the ground of classical mechanics,
we can satisfy this requirement for our illus-
tration in the following manner. We imag-
ine two clocks of identical construction; the
man at the railway-carriage window is hold-
ing one of them, and the man on the footpath
the other. Each of the observers determines
the position on his own reference-body occu-
pied by the stone at each tick of the clock he
is holding in his hand. In this connection we
have not taken account of the inaccuracy in-
volved by the finiteness of the velocity of prop-
agation of light. With this and with a second
difficulty prevailing here we shall have to deal
in detail later.
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IV. The Galileian
System of
Co-ordinates

As is well known, the fundamental law of the
mechanics of Galilei-Newton, which is known
as the law of inertia, can be stated thus: A
body removed sufficiently far from other bod-
ies continues in a state of rest or of uniform
motion in a straight line. This law not only
says something about the motion of the bod-
ies, but it also indicates the reference-bodies
or systems of co-ordinates, permissible in me-
chanics, which can be used in mechanical de-
scription. The visible fixed stars are bodies
for which the law of inertia certainly holds to
a high degree of approximation. Now if we
use a system of co-ordinates which is rigidly
attached to the earth, then, relative to this
system, every fixed star describes a circle of
immense radius in the course of an astronom-
ical day, a result which is opposed to the state-
ment of the law of inertia. So that if we adhere
to this law we must refer these motions only to
systems of co-ordinates relative to which the

15
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fixed stars do not move in a circle. A system
of co-ordinates of which the state of motion is
such that the law of inertia holds relative to it
is called a “Galileian system of co-ordinates.”
The laws of the mechanics of Galilei-Newton
can be regarded as valid only for a Galileian
system of co-ordinates.



V. The Principle of
Relativity (In the
Restricted Sense)

In order to attain the greatest possible clear-
ness, let us return to our example of the rail-
way carriage supposed to be travelling uni-
formly. We call its motion a uniform trans-
lation (“uniform” because it is of constant ve-
locity and direction, “translation” because al-
though the carriage changes its position rel-
ative to the embankment yet it does not ro-
tate in so doing). Let us imagine a raven fly-
ing through the air in such a manner that its
motion, as observed from the embankment, is
uniform and in a straight line. If we were to
observe the flying raven from the moving rail-
way carriage, we should find that the motion
of the raven would be one of different velocity
and direction, but that it would still be uni-
form and in a straight line. Expressed in an
abstract manner we may say: If a mass m is
moving uniformly in a straight line with re-
spect to a co-ordinate system K, then it will
also be moving uniformly and in a straight

17
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line relative to a second co-ordinate system
K ′, provided that the latter is executing a uni-
form translatory motion with respect to K. In
accordance with the discussion contained in
the preceding section, it follows that:

If K is a Galileian co-ordinate system, then
every other co-ordinate system K ′ is a Galile-
ian one, when, in relation to K, it is in a condi-
tion of uniform motion of translation. Relative
to K ′ the mechanical laws of Galilei-Newton
hold good exactly as they do with respect to
K.

We advance a step farther in our general-
isation when we express the tenet thus: If,
relative to K, K ′ is a uniformly moving co-
ordinate system devoid of rotation, then natu-
ral phenomena run their course with respect
to K ′ according to exactly the same general
laws as with respect to K. This statement
is called the principle of relativity (in the re-
stricted sense).

As long as one was convinced that all nat-
ural phenomena were capable of represen-
tation with the help of classical mechanics,
there was no need to doubt the validity of
this principle of relativity. But in view of the
more recent development of electrodynamics
and optics it became more and more evident
that classical mechanics affords an insuffi-
cient foundation for the physical description
of all natural phenomena. At this juncture the
question of the validity of the principle of rel-
ativity became ripe for discussion, and it did
not appear impossible that the answer to this
question might be in the negative.
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Nevertheless, there are two general facts
which at the outset speak very much in favour
of the validity of the principle of relativ-
ity. Even though classical mechanics does
not supply us with a sufficiently broad basis
for the theoretical presentation of all physical
phenomena, still we must grant it a consid-
erable measure of “truth,” since it supplies us
with the actual motions of the heavenly bodies
with a delicacy of detail little short of wonder-
ful. The principle of relativity must therefore
apply with great accuracy in the domain of
mechanics. But that a principle of such broad
generality should hold with such exactness in
one domain of phenomena, and yet should be
invalid for another, is a priori not very proba-
ble.

We now proceed to the second argument,
to which, moreover, we shall return later. If
the principle of relativity (in the restricted
sense) does not hold, then the Galileian co-
ordinate systems K, K ′, K ′′, etc., which are
moving uniformly relative to each other, will
not be equivalent for the description of nat-
ural phenomena. In this case we should be
constrained to believe that natural laws are
capable of being formulated in a particularly
simple manner, and of course only on condi-
tion that, from amongst all possible Galileian
co-ordinate systems, we should have chosen
one (K0) of a particular state of motion as our
body of reference. We should then be justi-
fied (because of its merits for the description
of natural phenomena) in calling this system
“absolutely at rest,” and all other Galileian
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systems K “in motion.” If, for instance, our
embankment were the system K0, then our
railway carriage would be a system K, rela-
tive to which less simple laws would hold than
with respect to K0. This diminished simplic-
ity would be due to the fact that the carriage
K would be in motion (i.e. “really”) with re-
spect to K0. In the general laws of natural
phenomena which have been formulated with
reference to K, the magnitude and direction
of the velocity of the carriage would necessar-
ily play a part. We should expect, for instance,
that the note emitted by an organ-pipe placed
with its axis parallel to the direction of travel
would be different from that emitted if the
axis of the pipe were placed perpendicular to
this direction. Now in virtue of its motion in
an orbit round the sun, our earth is compa-
rable with a railway carriage travelling with
a velocity of about 30 kilometres per second.
If the principle of relativity were not valid
we should therefore expect that the direction
of motion of the earth at any moment would
enter into the laws of nature, and also that
physical systems in their behaviour would be
dependent on the orientation in space with
respect to the earth. For owing to the al-
teration in direction of the velocity of rota-
tion of the earth in the course of a year, the
earth cannot be at rest relative to the hypo-
thetical system K0 throughout the whole year.
However, the most careful observations have
never revealed such anisotropic properties in
terrestrial physical space, i.e. a physical non-
equivalence of different directions. This is a
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very powerful argument in favour of the prin-
ciple of relativity.
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VI. The Theorem of
the Addition of
Velocities
Employed in
Classical
Mechanics

Let us suppose our old friend the railway car-
riage to be travelling along the rails with a
constant velocity v, and that a man traverses
the length of the carriage in the direction of
travel with a velocity w. How quickly, or, in
other words, with what velocity W does the
man advance relative to the embankment dur-
ing the process? The only possible answer
seems to result from the following consider-
ation: If the man were to stand still for a
second, he would advance relative to the em-
bankment through a distance v equal numer-
ically to the velocity of the carriage. As a
consequence of his walking, however, he tra-
verses an additional distance w relative to

23
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the carriage, and hence also relative to the
embankment, in this second, the distance w
being numerically equal to the velocity with
which he is walking. Thus in total he covers
the distance W = v + w relative to the em-
bankment in the second considered. We shall
see later that this result, which expresses the
theorem of the addition of velocities employed
in classical mechanics, cannot be maintained;
in other words, the law that we have just writ-
ten down does not hold in reality. For the time
being, however, we shall assume its correct-
ness.



VII. The Apparent
Incompatibility of
the Law of
Propagation of
Light with the
Principle of
Relativity

There is hardly a simpler law in physics than
that according to which light is propagated in
empty space. Every child at school knows,
or believes he knows, that this propagation
takes place in straight lines with a velocity c =
300000 km./sec. At all events we know with
great exactness that this velocity is the same
for all colours, because if this were not the
case, the minimum of emission would not be
observed simultaneously for different colours
during the eclipse of a fixed star by its dark
neighbour. By means of similar considera-
tions based on observations of double stars,
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the Dutch astronomer De Sitter was also able
to show that the velocity of propagation of
light cannot depend on the velocity of motion
of the body emitting the light. The assump-
tion that this velocity of propagation is depen-
dent on the direction “in space” is in itself im-
probable.

In short, let us assume that the simple law
of the constancy of the velocity of light c (in
vacuum) is justifiably believed by the child at
school. Who would imagine that this simple
law has plunged the conscientiously thought-
ful physicist into the greatest intellectual dif-
ficulties? Let us consider how these difficul-
ties arise.

Of course we must refer the process of the
propagation of light (and indeed every other
process) to a rigid reference-body (co-ordinate
system). As such a system let us again choose
our embankment. We shall imagine the air
above it to have been removed. If a ray of
light be sent along the embankment, we see
from the above that the tip of the ray will be
transmitted with the velocity c relative to the
embankment. Now let us suppose that our
railway carriage is again travelling along the
railway lines with the velocity v, and that its
direction is the same as that of the ray of light,
but its velocity of course much less. Let us in-
quire about the velocity of propagation of the
ray of light relative to the carriage. It is obvi-
ous that we can here apply the consideration
of the previous section, since the ray of light
plays the part of the man walking along rel-
atively to the carriage. The velocity W of the
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man relative to the embankment is here re-
placed by the velocity of light relative to the
embankment. w is the required velocity of
light with respect to the carriage, and we have

w = c− v.

The velocity of propagation of a ray of light
relative to the carriage thus comes out smaller
than c.

But this result comes into conflict with the
principle of relativity set forth in Section V.
For, like every other general law of nature, the
law of the transmission of light in vacuo must,
according to the principle of relativity, be the
same for the railway carriage as reference-
body as when the rails are the body of refer-
ence. But, from our above consideration, this
would appear to be impossible. If every ray
of light is propagated relative to the embank-
ment with the velocity c, then for this reason
it would appear that another law of propaga-
tion of light must necessarily hold with re-
spect to the carriage—a result contradictory
to the principle of relativity.

In view of this dilemma there appears to
be nothing else for it than to abandon either
the principle of relativity or the simple law
of the propagation of light in vacuo. Those
of you who have carefully followed the pre-
ceding discussion are almost sure to expect
that we should retain the principle of relativ-
ity, which appeals so convincingly to the intel-
lect because it is so natural and simple. The
law of the propagation of light in vacuo would
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then have to be replaced by a more compli-
cated law conformable to the principle of rela-
tivity. The development of theoretical physics
shows, however, that we cannot pursue this
course. The epoch-making theoretical investi-
gations of H. A. Lorentz on the electrodynam-
ical and optical phenomena connected with
moving bodies show that experience in this
domain leads conclusively to a theory of elec-
tromagnetic phenomena, of which the law of
the constancy of the velocity of light in vacuo
is a necessary consequence. Prominent theo-
retical physicists were therefore more inclined
to reject the principle of relativity, in spite of
the fact that no empirical data had been found
which were contradictory to this principle.

At this juncture the theory of relativity en-
tered the arena. As a result of an analysis
of the physical conceptions of time and space,
it became evident that in reality there is not
the least incompatibility between the princi-
ple of relativity and the law of propagation
of light, and that by systematically holding
fast to both these laws a logically rigid the-
ory could be arrived at. This theory has been
called the special theory of relativity to distin-
guish it from the extended theory, with which
we shall deal later. In the following pages
we shall present the fundamental ideas of the
special theory of relativity.



VIII. On the Idea of
Time in Physics

Lightning has struck the rails on our railway
embankment at two places A and B far dis-
tant from each other. I make the additional
assertion that these two lightning flashes oc-
curred simultaneously. If now I ask you
whether there is sense in this statement, you
will answer my question with a decided “Yes.”
But if I now approach you with the request
to explain to me the sense of the statement
more precisely, you find after some considera-
tion that the answer to this question is not so
easy as it appears at first sight.

After some time perhaps the following an-
swer would occur to you: “The significance
of the statement is clear in itself and needs
no further explanation; of course it would
require some consideration if I were to be
commissioned to determine by observations
whether in the actual case the two events
took place simultaneously or not.” I cannot
be satisfied with this answer for the follow-
ing reason. Supposing that as a result of in-
genious considerations an able meteorologist
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were to discover that the lightning must al-
ways strike the places A and B simultane-
ously, then we should be faced with the task
of testing whether or not this theoretical re-
sult is in accordance with the reality. We en-
counter the same difficulty with all physical
statements in which the conception “simulta-
neous” plays a part. The concept does not ex-
ist for the physicist until he has the possi-
bility of discovering whether or not it is ful-
filled in an actual case. We thus require a
definition of simultaneity such that this def-
inition supplies us with the method by means
of which, in the present case, he can decide by
experiment whether or not both the lightning
strokes occurred simultaneously. As long as
this requirement is not satisfied, I allow my-
self to be deceived as a physicist (and of course
the same applies if I am not a physicist), when
I imagine that I am able to attach a meaning
to the statement of simultaneity. (I would ask
the reader not to proceed farther until he is
fully convinced on this point.)

After thinking the matter over for some
time you then offer the following suggestion
with which to test simultaneity. By mea-
suring along the rails, the connecting line
AB should be measured up and an observer
placed at the mid-point M of the distance
AB. This observer should be supplied with
an arrangement (e.g. two mirrors inclined at
90◦) which allows him visually to observe both
places A and B at the same time. If the ob-
server perceives the two flashes of lightning
at the same time, then they are simultaneous.
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I am very pleased with this suggestion,
but for all that I cannot regard the matter
as quite settled, because I feel constrained to
raise the following objection: “Your definition
would certainly be right, if I only knew that
the light by means of which the observer at M
perceives the lightning flashes travels along
the length A → M with the same velocity as
along the length B → M . But an examination
of this supposition would only be possible if we
already had at our disposal the means of mea-
suring time. It would thus appear as though
we were moving here in a logical circle.”

After further consideration you cast a
somewhat disdainful glance at me—and
rightly so—and you declare: “I maintain my
previous definition nevertheless, because in
reality it assumes absolutely nothing about
light. There is only one demand to be made
of the definition of simultaneity, namely, that
in every real case it must supply us with an
empirical decision as to whether or not the
conception that has to be defined is fulfilled.
That my definition satisfies this demand is in-
disputable. That light requires the same time
to traverse the path A → M as for the path
B → M is in reality neither a supposition
nor a hypothesis about the physical nature of
light, but a stipulation which I can make of
my own freewill in order to arrive at a defini-
tion of simultaneity.”

It is clear that this definition can be used
to give an exact meaning not only to two
events, but to as many events as we care to
choose, and independently of the positions of
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the scenes of the events with respect to the
body of reference8 (here the railway embank-
ment). We are thus led also to a definition of
“time” in physics. For this purpose we sup-
pose that clocks of identical construction are
placed at the points A, B and C of the rail-
way line (co-ordinate system), and that they
are set in such a manner that the positions
of their pointers are simultaneously (in the
above sense) the same. Under these condi-
tions we understand by the “time” of an event
the reading (position of the hands) of that
one of these clocks which is in the immedi-
ate vicinity (in space) of the event. In this
manner a time-value is associated with every
event which is essentially capable of observa-
tion.

This stipulation contains a further phys-
ical hypothesis, the validity of which will
hardly be doubted without empirical evidence
to the contrary. It has been assumed that all
these clocks go at the same rate if they are of
identical construction. Stated more exactly:
When two clocks arranged at rest in different
places of a reference-body are set in such a
manner that a particular position of the point-
ers of the one clock is simultaneous (in the

8We suppose further that, when three events A, B
and C take place in different places in such a manner
that, if A is simultaneous with B, and B is simultane-
ous with C (simultaneous in the sense of the above def-
inition), then the criterion for the simultaneity of the
pair of events A, C is also satisfied. This assumption is
a physical hypothesis about the law of propagation of
light; it must certainly be fulfilled if we are to maintain
the law of the constancy of the velocity of light in vacuo.
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above sense) with the same position of the
pointers of the other clock, then identical “set-
tings” are always simultaneous (in the sense
of the above definition).
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IX. The Relativity
of Simultaneity

Up to now our considerations have been re-
ferred to a particular body of reference, which
we have styled a “railway embankment.” We
suppose a very long train travelling along the
rails with the constant velocity v and in the
direction indicated in Fig. 1. People travel-
ling in this train will with advantage use the
train as a rigid reference-body (co-ordinate
system); they regard all events in reference to
the train. Then every event which takes place
along the line also takes place at a particular
point of the train. Also the definition of si-
multaneity can be given relative to the train
in exactly the same way as with respect to the
embankment. As a natural consequence, how-
ever, the following question arises:

Are two events (e.g. the two strokes of
lightning A and B) which are simultaneous
with reference to the railway embankment
also simultaneous relatively to the train? We
shall show directly that the answer must be
in the negative.
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FIG. 1.

When we say that the lightning strokes A
and B are simultaneous with respect to the
embankment, we mean: the rays of light emit-
ted at the places A and B, where the lightning
occurs, meet each other at the mid-point M of
the length A → B of the embankment. But
the events A and B also correspond to posi-
tions A and B on the train. Let M ′ be the
mid-point of the distance A → B on the trav-
elling train. Just when the flashes9 of light-
ning occur, this point M ′ naturally coincides
with the point M , but it moves towards the
right in the diagram with the velocity v of the
train. If an observer sitting in the position M ′

in the train did not possess this velocity, then
he would remain permanently at M , and the
light rays emitted by the flashes of lightning
A and B would reach him simultaneously, i.e.
they would meet just where he is situated.
Now in reality (considered with reference to
the railway embankment) he is hastening to-
wards the beam of light coming from B, whilst
he is riding on ahead of the beam of light com-
ing from A. Hence the observer will see the
beam of light emitted from B earlier than he
will see that emitted from A. Observers who
take the railway train as their reference-body

9As judged from the embankment.
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must therefore come to the conclusion that the
lightning flash B took place earlier than the
lightning flash A. We thus arrive at the im-
portant result:

Events which are simultaneous with refer-
ence to the embankment are not simultane-
ous with respect to the train, and vice versa
(relativity of simultaneity). Every reference-
body (co-ordinate system) has its own particu-
lar time; unless we are told the reference-body
to which the statement of time refers, there is
no meaning in a statement of the time of an
event.

Now before the advent of the theory of rel-
ativity it had always tacitly been assumed in
physics that the statement of time had an ab-
solute significance, i.e. that it is independent
of the state of motion of the body of reference.
But we have just seen that this assumption is
incompatible with the most natural definition
of simultaneity; if we discard this assump-
tion, then the conflict between the law of the
propagation of light in vacuo and the principle
of relativity (developed in Section VII) disap-
pears.

We were led to that conflict by the con-
siderations of Section VI, which are now no
longer tenable. In that section we concluded
that the man in the carriage, who traverses
the distance w per second relative to the car-
riage, traverses the same distance also with
respect to the embankment in each second
of time. But, according to the foregoing con-
siderations, the time required by a particular
occurrence with respect to the carriage must
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not be considered equal to the duration of the
same occurrence as judged from the embank-
ment (as reference-body). Hence it cannot be
contended that the man in walking travels the
distance w relative to the railway line in a
time which is equal to one second as judged
from the embankment.

Moreover, the considerations of Section VI
are based on yet a second assumption, which,
in the light of a strict consideration, appears
to be arbitrary, although it was always tacitly
made even before the introduction of the the-
ory of relativity.



X. On the Relativity
of the Conception
of Distance

Let us consider two particular points on the
train10 travelling along the embankment with
the velocity v, and inquire as to their distance
apart. We already know that it is necessary
to have a body of reference for the measure-
ment of a distance, with respect to which body
the distance can be measured up. It is the
simplest plan to use the train itself as the
reference-body (co-ordinate system). An ob-
server in the train measures the interval by
marking off his measuring-rod in a straight
line (e.g. along the floor of the carriage) as
many times as is necessary to take him from
the one marked point to the other. Then the
number which tells us how often the rod has
to be laid down is the required distance.

It is a different matter when the distance
has to be judged from the railway line. Here
the following method suggests itself. If we call

10E.g. the middle of the first and of the hundredth
carriage.
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A′ and B′ the two points on the train whose
distance apart is required, then both of these
points are moving with the velocity v along
the embankment. In the first place we require
to determine the points A and B of the em-
bankment which are just being passed by the
two points A′ and B′ at a particular time t—
judged from the embankment. These points A
and B of the embankment can be determined
by applying the definition of time given in Sec-
tion VIII. The distance between these points A
and B is then measured by repeated applica-
tion of the measuring-rod along the embank-
ment.

A priori it is by no means certain that
this last measurement will supply us with
the same result as the first. Thus the length
of the train as measured from the embank-
ment may be different from that obtained by
measuring in the train itself. This circum-
stance leads us to a second objection which
must be raised against the apparently obvi-
ous consideration of Section VI. Namely, if the
man in the carriage covers the distance w in
a unit of time—measured from the train,—
then this distance—as measured from the
embankment—is not necessarily also equal to
w.



XI. The Lorentz
Transformation

The results of the last three sections show
that the apparent incompatibility of the law of
propagation of light with the principle of rela-
tivity (Section VII) has been derived by means
of a consideration which borrowed two unjus-
tifiable hypotheses from classical mechanics;
these are as follows: The time-interval (time)
between two events is independent of the con-
dition of motion of the body of reference. The
space-interval (distance) between two points
of a rigid body is independent of the condition
of motion of the body of reference.

If we drop these hypotheses, then the
dilemma of Section VII disappears, because
the theorem of the addition of velocities de-
rived in Section VI becomes invalid. The pos-
sibility presents itself that the law of the prop-
agation of light in vacuo may be compatible
with the principle of relativity, and the ques-
tion arises: How have we to modify the con-
siderations of Section VI in order to remove
the apparent disagreement between these two
fundamental results of experience? This ques-
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tion leads to a general one. In the discussion
of Section VI we have to do with places and
times relative both to the train and to the em-
bankment. How are we to find the place and
time of an event in relation to the train, when
we know the place and time of the event with
respect to the railway embankment? Is there
a thinkable answer to this question of such a
nature that the law of transmission of light
in vacuo does not contradict the principle of
relativity? In other words: Can we conceive
of a relation between place and time of the
individual events relative to both reference-
bodies, such that every ray of light possesses
the velocity of transmission c relative to the
embankment and relative to the train? This
question leads to a quite definite positive an-
swer, and to a perfectly definite transforma-
tion law for the space-time magnitudes of an
event when changing over from one body of
reference to another.

Before we deal with this, we shall in-
troduce the following incidental considera-
tion. Up to the present we have only consid-
ered events taking place along the embank-
ment, which had mathematically to assume
the function of a straight line. In the man-
ner indicated in Section II we can imagine this
reference-body supplemented laterally and in
a vertical direction by means of a framework
of rods, so that an event which takes place
anywhere can be localised with reference to
this framework. Similarly, we can imagine
the train travelling with the velocity v to be
continued across the whole of space, so that
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every event, no matter how far off it may be,
could also be localised with respect to the sec-
ond framework. Without committing any fun-
damental error, we can disregard the fact that
in reality these frameworks would continually
interfere with each other, owing to the impen-
etrability of solid bodies. In every such frame-
work we imagine three surfaces perpendicu-
lar to each other marked out, and designated
as “co-ordinate planes” (“co-ordinate system”).
A co-ordinate system K then corresponds to
the embankment, and a co-ordinate system K ′

to the train. An event, wherever it may have
taken place, would be fixed in space with re-
spect to K by the three perpendiculars x, y,
z on the co-ordinate planes, and with regard
to time by a time-value t. Relative to K ′, the
same event would be fixed in respect of space
and time by corresponding values x′, y′, z′, t′,
which of course are not identical with x, y,
z, t. It has already been set forth in detail
how these magnitudes are to be regarded as
results of physical measurements.

Obviously our problem can be exactly for-
mulated in the following manner. What are
the values x′, y′, z′, t′ of an event with respect
to K ′, when the magnitudes x, y, z, t, of the
same event with respect to K are given? The
relations must be so chosen that the law of the
transmission of light in vacuo is satisfied for
one and the same ray of light (and of course for
every ray) with respect to K and K ′. For the
relative orientation in space of the co-ordinate
systems indicated in the diagram (Fig. 2), this
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problem is solved by means of the equations:

x′ =
x− vt√
1− v2

c2

y′ = y

z′ = z

t′ =
t− v

c2
x√

1− v2

c2

.

This system of equations is known as the
“Lorentz transformation.”11

FIG. 2.

If in place of the law of transmission of
light we had taken as our basis the tacit as-
sumptions of the older mechanics as to the ab-
solute character of times and lengths, then in-
stead of the above we should have obtained

11A simple derivation of the Lorentz transformation
is given in Appendix I.
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the following equations:

x′ = x− vt

y′ = y

z′ = z

t′ = t.

This system of equations is often termed
the “Galilei transformation.” The Galilei
transformation can be obtained from the
Lorentz transformation by substituting an in-
finitely large value for the velocity of light c in
the latter transformation.

Aided by the following illustration, we
can readily see that, in accordance with the
Lorentz transformation, the law of the trans-
mission of light in vacuo is satisfied both for
the reference-body K and for the reference-
body K ′. A light-signal is sent along the pos-
itive x-axis, and this light-stimulus advances
in accordance with the equation

x = ct;

i.e. with the velocity c. According to the equa-
tions of the Lorentz transformation, this sim-
ple relation between x and t involves a rela-
tion between x′ and t′. In point of fact, if we
substitute for x the value ct in the first and
fourth equations of the Lorentz transforma-
tion, we obtain

x′ =
(c− v)t√

1− v2

c2

t′ =
(1− v

c
)t√

1− v2

c2

,
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from which, by division, the expression

x′ = ct′

immediately follows. If referred to the sys-
tem K ′, the propagation of light takes place
according to this equation. We thus see that
the velocity of transmission relative to the
reference-body K ′ is also equal to c. The same
result is obtained for rays of light advancing
in any other direction whatsoever. Of course
this is not surprising, since the equations of
the Lorentz transformation were derived con-
formably to this point of view.



XII. The Behaviour
of Measuring-Rods
and Clocks in
Motion

I place a metre-rod in the x′-axis of K ′ in such
a manner that one end (the beginning) coin-
cides with the point x′ = 0, whilst the other
end (the end of the rod) coincides with the
point x′ = 1. What is the length of the metre-
rod relatively to the system K? In order to
learn this, we need only ask where the be-
ginning of the rod and the end of the rod lie
with respect to K at a particular time t of
the system K. By means of the first equa-
tion of the Lorentz transformation the values
of these two points at the time t = 0 can be
shown to be

x(beginning of rod) = 0 ·
√

1− v2

c2

x(end of rod) = 1 ·
√

1− v2

c2
;

the distance between the points being
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√
1− v2

c2
.

But the metre-rod is moving with the ve-
locity v relative to K. It therefore follows that
the length of a rigid metre-rod moving in the
direction of its length with a velocity v is√

1− v2/c2

of a metre. The rigid rod is thus shorter when
in motion than when at rest, and the more
quickly it is moving, the shorter is the rod. For
the velocity v = c we should have√

1− v2/c2 = 0,

and for still greater velocities the square-root
becomes imaginary. From this we conclude
that in the theory of relativity the velocity c
plays the part of a limiting velocity, which can
neither be reached nor exceeded by any real
body.

Of course this feature of the velocity c as a
limiting velocity also clearly follows from the
equations of the Lorentz transformation, for
these become meaningless if we choose values
of v greater than c.

If, on the contrary, we had considered a
metre-rod at rest in the x-axis with respect to
K, then we should have found that the length
of the rod as judged from K ′ would have been√

1− v2/c2;
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this is quite in accordance with the principle
of relativity which forms the basis of our con-
siderations.

A priori it is quite clear that we must be
able to learn something about the physical
behaviour of measuring-rods and clocks from
the equations of transformation, for the mag-
nitudes x, y, z, t, are nothing more nor less
than the results of measurements obtainable
by means of measuring-rods and clocks. If we
had based our considerations on the Galilei
transformation we should not have obtained
a contraction of the rod as a consequence of
its motion.

Let us now consider a seconds-clock which
is permanently situated at the origin (x′ = 0)
of K ′. t′ = 0 and t′ = 1 are two successive ticks
of this clock. The first and fourth equations of
the Lorentz transformation give for these two
ticks:

t = 0

and

t =
1√

1− v2

c2

.

As judged from K, the clock is moving with
the velocity v; as judged from this reference-
body, the time which elapses between two
strokes of the clock is not one second, but

1√
1− v2

c2

seconds, i.e. a somewhat larger time. As a
consequence of its motion the clock goes more
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slowly than when at rest. Here also the veloc-
ity c plays the part of an unattainable limiting
velocity.



XIII. Theorem of
the Addition of
Velocities. The
Experiment of
Fizeau

Now in practice we can move clocks and
measuring-rods only with velocities that are
small compared with the velocity of light;
hence we shall hardly be able to compare the
results of the previous section directly with
the reality. But, on the other hand, these re-
sults must strike you as being very singular,
and for that reason I shall now draw another
conclusion from the theory, one which can eas-
ily be derived from the foregoing considera-
tions, and which has been most elegantly con-
firmed by experiment.

In Section VI we derived the theorem of
the addition of velocities in one direction in
the form which also results from the hypothe-
ses of classical mechanics. This theorem can
also be deduced readily from the Galilei trans-
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formation (Section XI). In place of the man
walking inside the carriage, we introduce a
point moving relatively to the co-ordinate sys-
tem K ′ in accordance with the equation

x′ = wt′.

By means of the first and fourth equations
of the Galilei transformation we can express x′

and t′ in terms of x and t, and we then obtain

x = (v + w)t.

This equation expresses nothing else than
the law of motion of the point with reference
to the system K (of the man with reference
to the embankment). We denote this velocity
by the symbol W , and we then obtain, as in
Section VI,

W = v + w. (1)

But we can carry out this consideration
just as well on the basis of the theory of rel-
ativity. In the equation

x′ = wt′,

we must then express x′ and t′ in terms of x
and t, making use of the first and fourth equa-
tions of the Lorentz transformation. Instead
of the equation (1) we then obtain the equa-
tion

W =
v + w

1 + vw
c2

, (2)

which corresponds to the theorem of addition
for velocities in one direction according to the
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theory of relativity. The question now arises
as to which of these two theorems is the bet-
ter in accord with experience. On this point
we are enlightened by a most important ex-
periment which the brilliant physicist Fizeau
performed more than half a century ago, and
which has been repeated since then by some
of the best experimental physicists, so that
there can be no doubt about its result. The
experiment is concerned with the following
question. Light travels in a motionless liquid
with a particular velocity w. How quickly does
it travel in the direction of the arrow in the
tube T (see the accompanying diagram, Fig.
3) when the liquid above mentioned is flowing
through the tube with a velocity v?

FIG. 3.

In accordance with the principle of relativ-
ity we shall certainly have to take for granted
that the propagation of light always takes
place with the same velocity w with respect
to the liquid, whether the latter is in motion
with reference to other bodies or not. The ve-
locity of light relative to the liquid and the ve-
locity of the latter relative to the tube are thus
known, and we require the velocity of light
relative to the tube.



54 Relativity

It is clear that we have the problem of Sec-
tion VI again before us. The tube plays the
part of the railway embankment or of the co-
ordinate system K, the liquid plays the part
of the carriage or of the co-ordinate system
K ′, and finally, the light plays the part of the
man walking along the carriage, or of the mov-
ing point in the present section. If we denote
the velocity of the light relative to the tube by
W , then this is given by the equation (1) or
(2), according as the Galilei transformation or
the Lorentz transformation corresponds to the
facts. Experiment12 decides in favour of equa-
tion (2) derived from the theory of relativity,

12Fizeau found

W = w + v(1− 1
n2

),

where

n =
c

w

is the index of refraction of the liquid. On the other
hand, owing to the smallness of

vw

c2

as compared with 1, we can replace (2) in the first place
by

W = (w + v)(1− vw

c2
),

or to the same order of approximation by

w + v(1− 1
n2

),

which agrees with Fizeau’s result.
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and the agreement is, indeed, very exact. Ac-
cording to recent and most excellent measure-
ments by Zeeman, the influence of the velocity
of flow v on the propagation of light is repre-
sented by formula (2) to within one per cent.

Nevertheless we must now draw attention
to the fact that a theory of this phenomenon
was given by H. A. Lorentz long before the
statement of the theory of relativity. This the-
ory was of a purely electrodynamical nature,
and was obtained by the use of particular hy-
potheses as to the electromagnetic structure
of matter. This circumstance, however, does
not in the least diminish the conclusiveness
of the experiment as a crucial test in favour
of the theory of relativity, for the electrody-
namics of Maxwell-Lorentz, on which the orig-
inal theory was based, in no way opposes the
theory of relativity. Rather has the latter
been developed from electrodynamics as an
astoundingly simple combination and gener-
alisation of the hypotheses, formerly indepen-
dent of each other, on which electrodynamics
was built.
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XIV. The Heuristic
Value of the Theory
of Relativity

Our train of thought in the foregoing pages
can be epitomised in the following manner.
Experience has led to the conviction that, on
the one hand, the principle of relativity holds
true, and that on the other hand the velocity
of transmission of light in vacuo has to be con-
sidered equal to a constant c. By uniting these
two postulates we obtained the law of trans-
formation for the rectangular co-ordinates x,
y, z and the time t of the events which consti-
tute the processes of nature. In this connec-
tion we did not obtain the Galilei transforma-
tion, but, differing from classical mechanics,
the Lorentz transformation.

The law of transmission of light, the accep-
tance of which is justified by our actual knowl-
edge, played an important part in this process
of thought. Once in possession of the Lorentz
transformation, however, we can combine this
with the principle of relativity, and sum up the
theory thus:
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Every general law of nature must be so
constituted that it is transformed into a law
of exactly the same form when, instead of
the space-time variables x, y, z, t of the
original co-ordinate system K, we introduce
new space-time variables x′, y′, z′, t′ of a co-
ordinate system K ′. In this connection the re-
lation between the ordinary and the accented
magnitudes is given by the Lorentz transfor-
mation. Or, in brief: General laws of nature
are co-variant with respect to Lorentz trans-
formations.

This is a definite mathematical condition
that the theory of relativity demands of a nat-
ural law, and in virtue of this, the theory be-
comes a valuable heuristic aid in the search
for general laws of nature. If a general law
of nature were to be found which did not sat-
isfy this condition, then at least one of the
two fundamental assumptions of the theory
would have been disproved. Let us now ex-
amine what general results the latter theory
has hitherto evinced.



XV. General Results
of the Theory

It is clear from our previous considerations
that the (special) theory of relativity has
grown out of electrodynamics and optics. In
these fields it has not appreciably altered the
predictions of theory, but it has considerably
simplified the theoretical structure, i.e. the
derivation of laws, and—what is incompara-
bly more important—it has considerably re-
duced the number of independent hypotheses
forming the basis of theory. The special the-
ory of relativity has rendered the Maxwell-
Lorentz theory so plausible, that the latter
would have been generally accepted by physi-
cists even if experiment had decided less un-
equivocally in its favour.

Classical mechanics required to be modi-
fied before it could come into line with the de-
mands of the special theory of relativity. For
the main part, however, this modification af-
fects only the laws for rapid motions, in which
the velocities of matter v are not very small as
compared with the velocity of light. We have
experience of such rapid motions only in the
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case of electrons and ions; for other motions
the variations from the laws of classical me-
chanics are too small to make themselves evi-
dent in practice. We shall not consider the mo-
tion of stars until we come to speak of the gen-
eral theory of relativity. In accordance with
the theory of relativity the kinetic energy of a
material point of mass m is no longer given by
the well-known expression

m
v2

2
,

but by the expression

mc2√
1− v2

c2

.

This expression approaches infinity as the
velocity v approaches the velocity of light c.
The velocity must therefore always remain
less than c, however great may be the ener-
gies used to produce the acceleration. If we
develop the expression for the kinetic energy
in the form of a series,

mc2 + m
v2

2
+

3

8
m

v4

c2
+ . . . .

When
v2

c2

is small compared with unity, the third of
these terms is always small in comparison
with the second, which last is alone consid-
ered in classical mechanics. The first term mc2

does not contain the velocity, and requires no
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consideration if we are only dealing with the
question as to how the energy of a point-mass
depends on the velocity. We shall speak of its
essential significance later.

The most important result of a general
character to which the special theory of rel-
ativity has led is concerned with the concep-
tion of mass. Before the advent of relativity,
physics recognised two conservation laws of
fundamental importance, namely, the law of
the conservation of energy and the law of the
conservation of mass; these two fundamental
laws appeared to be quite independent of each
other. By means of the theory of relativity
they have been united into one law. We shall
now briefly consider how this unification came
about, and what meaning is to be attached to
it.

The principle of relativity requires that
the law of the conservation of energy should
hold not only with reference to a co-ordinate
system K, but also with respect to every co-
ordinate system K ′ which is in a state of uni-
form motion of translation relative to K, or,
briefly, relative to every “Galileian” system of
co-ordinates. In contrast to classical mechan-
ics, the Lorentz transformation is the deciding
factor in the transition from one such system
to another.

By means of comparatively simple consid-
erations we are led to draw the following con-
clusion from these premises, in conjunction
with the fundamental equations of the elec-
trodynamics of Maxwell: A body moving with
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the velocity v, which absorbs13 an amount of
energy E0 in the form of radiation without suf-
fering an alteration in velocity in the process,
has, as a consequence, its energy increased by
an amount

E0√
1− v2

c2

.

In consideration of the expression given
above for the kinetic energy of the body, the
required energy of the body comes out to be

(m + E0

c2
)c2√

1− v2

c2

.

Thus the body has the same energy as a body
of mass

(m +
E0

c2
)

moving with the velocity v. Hence we can say:
If a body takes up an amount of energy E0,
then its inertial mass increases by an amount

E0

c2
,

the inertial mass of a body is not a constant,
but varies according to the change in the en-
ergy of the body. The inertial mass of a system
of bodies can even be regarded as a measure of
its energy. The law of the conservation of the
mass of a system becomes identical with the
law of the conservation of energy, and is only

13E0 is the energy taken up, as judged from a co-
ordinate system moving with the body.
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valid provided that the system neither takes
up nor sends out energy. Writing the expres-
sion for the energy in the form

mc2 + E0√
1− v2

c2

,

we see that the term mc2, which has hitherto
attracted our attention, is nothing else than
the energy possessed by the body14 before it
absorbed the energy E0.

A direct comparison of this relation with
experiment is not possible at the present time,
owing to the fact that the changes in energy
E0 to which we can subject a system are not
large enough to make themselves perceptible
as a change in the inertial mass of the system.

E0

c2

is too small in comparison with the mass m,
which was present before the alteration of the
energy. It is owing to this circumstance that
classical mechanics was able to establish suc-
cessfully the conservation of mass as a law of
independent validity.

Let me add a final remark of a funda-
mental nature. The success of the Faraday-
Maxwell interpretation of electromagnetic ac-
tion at a distance resulted in physicists be-
coming convinced that there are no such
things as instantaneous actions at a distance
(not involving an intermediary medium) of the

14As judged from a co-ordinate system moving with
the body.
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type of Newton’s law of gravitation. Accord-
ing to the theory of relativity, action at a dis-
tance with the velocity of light always takes
the place of instantaneous action at a distance
or of action at a distance with an infinite ve-
locity of transmission. This is connected with
the fact that the velocity c plays a fundamen-
tal rôle in this theory. In Part II we shall see
in what way this result becomes modified in
the general theory of relativity.



XVI. Experience
and the Special
Theory of
Relativity

To what extent is the special theory of rel-
ativity supported by experience? This ques-
tion is not easily answered for the reason al-
ready mentioned in connection with the fun-
damental experiment of Fizeau. The spe-
cial theory of relativity has crystallised out
from the Maxwell-Lorentz theory of electro-
magnetic phenomena. Thus all facts of expe-
rience which support the electromagnetic the-
ory also support the theory of relativity. As be-
ing of particular importance, I mention here
the fact that the theory of relativity enables
us to predict the effects produced on the light
reaching us from the fixed stars. These re-
sults are obtained in an exceedingly simple
manner, and the effects indicated, which are
due to the relative motion of the earth with
reference to those fixed stars, are found to be
in accord with experience. We refer to the
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yearly movement of the apparent position of
the fixed stars resulting from the motion of
the earth round the sun (aberration), and to
the influence of the radial components of the
relative motions of the fixed stars with respect
to the earth on the colour of the light reach-
ing us from them. The latter effect manifests
itself in a slight displacement of the spectral
lines of the light transmitted to us from a
fixed star, as compared with the position of the
same spectral lines when they are produced
by a terrestrial source of light (Doppler prin-
ciple). The experimental arguments in favour
of the Maxwell-Lorentz theory, which are at
the same time arguments in favour of the the-
ory of relativity, are too numerous to be set
forth here. In reality they limit the theoretical
possibilities to such an extent, that no other
theory than that of Maxwell and Lorentz has
been able to hold its own when tested by ex-
perience.

But there are two classes of experimen-
tal facts hitherto obtained which can be rep-
resented in the Maxwell-Lorentz theory only
by the introduction of an auxiliary hypothe-
sis, which in itself—i.e. without making use of
the theory of relativity—appears extraneous.

It is known that cathode rays and the
so-called β-rays emitted by radioactive sub-
stances consist of negatively electrified parti-
cles (electrons) of very small inertia and large
velocity. By examining the deflection of these
rays under the influence of electric and mag-
netic fields, we can study the law of motion of
these particles very exactly.
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In the theoretical treatment of these elec-
trons, we are faced with the difficulty that
electrodynamic theory of itself is unable to
give an account of their nature. For since elec-
trical masses of one sign repel each other, the
negative electrical masses constituting the
electron would necessarily be scattered under
the influence of their mutual repulsions, un-
less there are forces of another kind operat-
ing between them, the nature of which has
hitherto remained obscure to us.15 If we now
assume that the relative distances between
the electrical masses constituting the electron
remain unchanged during the motion of the
electron (rigid connection in the sense of clas-
sical mechanics), we arrive at a law of motion
of the electron which does not agree with ex-
perience. Guided by purely formal points of
view, H. A. Lorentz was the first to introduce
the hypothesis that the particles constituting
the electron experience a contraction in the di-
rection of motion in consequence of that mo-
tion, the amount of this contraction being pro-
portional to the expression√

1− v2

c2

This hypothesis, which is not justifiable by
any electrodynamical facts, supplies us then
with that particular law of motion which has
been confirmed with great precision in recent
years.

15The general theory of relativity renders it likely
that the electrical masses of an electron are held to-
gether by gravitational forces.
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The theory of relativity leads to the same
law of motion, without requiring any special
hypothesis whatsoever as to the structure and
the behaviour of the electron. We arrived at a
similar conclusion in Section XIII in connec-
tion with the experiment of Fizeau, the result
of which is fore-told by the theory of relativity
without the necessity of drawing on hypothe-
ses as to the physical nature of the liquid.

The second class of facts to which we have
alluded has reference to the question whether
or not the motion of the earth in space can be
made perceptible in terrestrial experiments.
We have already remarked in Section V that
all attempts of this nature led to a negative
result. Before the theory of relativity was
put forward, it was difficult to become rec-
onciled to this negative result, for reasons
now to be discussed. The inherited preju-
dices about time and space did not allow any
doubt to arise as to the prime importance of
the Galilei transformation for changing over
from one body of reference to another. Now as-
suming that the Maxwell-Lorentz equations
hold for a reference-body K, we then find that
they do not hold for a reference-body K ′ mov-
ing uniformly with respect to K, if we assume
that the relations of the Galileian transfor-
mation exist between the co-ordinates of K
and K ′. It thus appears that of all Galile-
ian co-ordinate systems one (K) correspond-
ing to a particular state of motion is physically
unique. This result was interpreted physi-
cally by regarding K as at rest with respect
to a hypothetical æther of space. On the other
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hand, all co-ordinate systems K ′ moving rela-
tively to K were to be regarded as in motion
with respect to the æther. To this motion of
K ′ against the æther (“æther-drift” relative to
K ′) were assigned the more complicated laws
which were supposed to hold relative to K ′.
Strictly speaking, such an æther-drift ought
also to be assumed relative to the earth, and
for a long time the efforts of physicists were
devoted to attempts to detect the existence of
an æther-drift at the earth’s surface.

In one of the most notable of these at-
tempts Michelson devised a method which ap-
pears as though it must be decisive. Imag-
ine two mirrors so arranged on a rigid body
that the reflecting surfaces face each other. A
ray of light requires a perfectly definite time
T to pass from one mirror to the other and
back again, if the whole system be at rest with
respect to the æther. It is found by calcula-
tion, however, that a slightly different time
T ′ is required for this process, if the body, to-
gether with the mirrors, be moving relatively
to the æther. And yet another point: it is
shown by calculation that for a given velocity
v with reference to the æther, this time T ′ is
different when the body is moving perpendic-
ularly to the planes of the mirrors from that
resulting when the motion is parallel to these
planes. Although the estimated difference be-
tween these two times is exceedingly small,
Michelson and Morley performed an experi-
ment involving interference in which this dif-
ference should have been clearly detectable.
But the experiment gave a negative result—
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a fact very perplexing to physicists. Lorentz
and FitzGerald rescued the theory from this
difficulty by assuming that the motion of the
body relative to the æther produces a contrac-
tion of the body in the direction of motion,
the amount of contraction being just sufficient
to compensate for the difference in time men-
tioned above. Comparison with the discussion
in Section XII shows that from the standpoint
also of the theory of relativity this solution of
the difficulty was the right one. But on the
basis of the theory of relativity the method
of interpretation is incomparably more satis-
factory. According to this theory there is no
such thing as a “specially favoured” (unique)
co-ordinate system to occasion the introduc-
tion of the æther-idea, and hence there can
be no æther-drift, nor any experiment with
which to demonstrate it. Here the contrac-
tion of moving bodies follows from the two fun-
damental principles of the theory without the
introduction of particular hypotheses; and as
the prime factor involved in this contraction
we find, not the motion in itself, to which we
cannot attach any meaning, but the motion
with respect to the body of reference chosen
in the particular case in point. Thus for a
co-ordinate system moving with the earth the
mirror system of Michelson and Morley is not
shortened, but it is shortened for a co-ordinate
system which is at rest relatively to the sun.



XVII. Minkowski’s
Four-Dimensional
Space

The non-mathematician is seized by a mys-
terious shuddering when he hears of “four-
dimensional” things, by a feeling not unlike
that awakened by thoughts of the occult. And
yet there is no more common-place statement
than that the world in which we live is a four-
dimensional space-time continuum.

Space is a three-dimensional continuum.
By this we mean that it is possible to describe
the position of a point (at rest) by means
of three numbers (co-ordinates) x, y, z, and
that there is an indefinite number of points
in the neighbourhood of this one, the posi-
tion of which can be described by co-ordinates
such as x1, y1, z1, which may be as near as
we choose to the respective values of the co-
ordinates x, y, z of the first point. In virtue of
the latter property we speak of a “continuum,”
and owing to the fact that there are three
co-ordinates we speak of it as being “three-
dimensional.”
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Similarly, the world of physical phenom-
ena which was briefly called “world” by
Minkowski is naturally four-dimensional in
the space-time sense. For it is composed of
individual events, each of which is described
by four numbers, namely, three space co-
ordinates x, y, z and a time co-ordinate, the
time-value t. The “world” is in this sense
also a continuum; for to every event there are
as many “neighbouring” events (realised or at
least thinkable) as we care to choose, the co-
ordinates x1, y1, z1, t1 of which differ by an
indefinitely small amount from those of the
event x, y, z, t originally considered. That we
have not been accustomed to regard the world
in this sense as a four-dimensional continuum
is due to the fact that in physics, before the ad-
vent of the theory of relativity, time played a
different and more independent rôle, as com-
pared with the space co-ordinates. It is for
this reason that we have been in the habit of
treating time as an independent continuum.
As a matter of fact, according to classical me-
chanics, time is absolute, i.e. it is independent
of the position and the condition of motion of
the system of co-ordinates. We see this ex-
pressed in the last equation of the Galileian
transformation (t′ = t).

The four-dimensional mode of considera-
tion of the “world” is natural in the theory of
relativity, since according to this theory time
is robbed of its independence. This is shown
by the fourth equation of the Lorentz trans-
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formation:
t′ =

t− v
c2

x√
1− v2

c2

Moreover, according to this equation the
time difference ∆t′ of two events with respect
to K ′ does not in general vanish, even when
the time difference ∆t of the same events
with reference to K vanishes. Pure “space-
distance” of two events with respect to K re-
sults in “time-distance” of the same events
with respect to K ′. But the discovery, of
Minkowski, which was of importance for the
formal development of the theory of relativ-
ity, does not lie here. It is to be found rather
in the fact of his recognition that the four-
dimensional space-time continuum of the the-
ory of relativity, in its most essential formal
properties, shows a pronounced relationship
to the three-dimensional continuum of Eu-
clidean geometrical space.16 In order to give
due prominence to this relationship, however,
we must replace the usual time co-ordinate
t by an imaginary magnitude

√
−1ct propor-

tional to it. Under these conditions, the nat-
ural laws satisfying the demands of the (spe-
cial) theory of relativity assume mathemati-
cal forms, in which the time co-ordinate plays
exactly the same rôle as the three space co-
ordinates. Formally, these four co-ordinates
correspond exactly to the three space co-
ordinates in Euclidean geometry. It must be
clear even to the non-mathematician that, as

16Cf. the somewhat more detailed discussion in Ap-
pendix II.



74 Relativity

a consequence of this purely formal addition
to our knowledge, the theory perforce gained
clearness in no mean measure.

These inadequate remarks can give the
reader only a vague notion of the important
idea contributed by Minkowski. Without it
the general theory of relativity, of which the
fundamental ideas are developed in the fol-
lowing pages, would perhaps have got no far-
ther than its long clothes. Minkowski’s work
is doubtless difficult of access to anyone inex-
perienced in mathematics, but since it is not
necessary to have a very exact grasp of this
work in order to understand the fundamen-
tal ideas of either the special or the general
theory of relativity, I shall at present leave it
here, and shall revert to it only towards the
end of Part II.



Part II: The
General Theory of

Relativity
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XVIII. Special and
General Principle
of Relativity

The basal principle, which was the pivot of all
our previous considerations, was the special
principle of relativity, i.e. the principle of the
physical relativity of all uniform motion. Let
us once more analyse its meaning carefully.

It was at all times clear that, from the
point of view of the idea it conveys to us, every
motion must only be considered as a relative
motion. Returning to the illustration we have
frequently used of the embankment and the
railway carriage, we can express the fact of
the motion here taking place in the following
two forms, both of which are equally justifi-
able: The carriage is in motion relative to the
embankment. The embankment is in motion
relative to the carriage.

In (a) the embankment, in (b) the carriage,
serves as the body of reference in our state-
ment of the motion taking place. If it is sim-
ply a question of detecting or of describing the
motion involved, it is in principle immaterial
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to what reference-body we refer the motion.
As already mentioned, this is self-evident, but
it must not be confused with the much more
comprehensive statement called “the princi-
ple of relativity,” which we have taken as the
basis of our investigations.

The principle we have made use of not
only maintains that we may equally well
choose the carriage or the embankment as our
reference-body for the description of any event
(for this, too, is self-evident). Our principle
rather asserts what follows: If we formulate
the general laws of nature as they are ob-
tained from experience, by making use of the
embankment as reference-body, the railway
carriage as reference-body, then these gen-
eral laws of nature (e.g. the laws of mechan-
ics or the law of the propagation of light in
vacuo) have exactly the same form in both
cases. This can also be expressed as follows:
For the physical description of natural pro-
cesses, neither of the reference-bodies K, K ′

is unique (lit. “specially marked out”) as com-
pared with the other. Unlike the first, this lat-
ter statement need not of necessity hold a pri-
ori; it is not contained in the conceptions of
“motion” and “reference-body” and derivable
from them; only experience can decide as to its
correctness or incorrectness.

Up to the present, however, we have by
no means maintained the equivalence of all
bodies of reference K in connection with the
formulation of natural laws. Our course was
more on the following lines. In the first place,
we started out from the assumption that there
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exists a reference-body K, whose condition of
motion is such that the Galileian law holds
with respect to it: A particle left to itself and
sufficiently far removed from all other parti-
cles moves uniformly in a straight line. With
reference to K (Galileian reference-body) the
laws of nature were to be as simple as pos-
sible. But in addition to K, all bodies of ref-
erence K ′ should be given preference in this
sense, and they should be exactly equivalent
to K for the formulation of natural laws, pro-
vided that they are in a state of uniform rec-
tilinear and non-rotary motion with respect
to K; all these bodies of reference are to be
regarded as Galileian reference-bodies. The
validity of the principle of relativity was as-
sumed only for these reference-bodies, but not
for others (e.g. those possessing motion of a
different kind). In this sense we speak of the
special principle of relativity, or special theory
of relativity.

In contrast to this we wish to understand
by the “general principle of relativity” the fol-
lowing statement: All bodies of reference K,
K ′, etc., are equivalent for the description of
natural phenomena (formulation of the gen-
eral laws of nature), whatever may be their
state of motion. But before proceeding farther,
it ought to be pointed out that this formula-
tion must be replaced later by a more abstract
one, for reasons which will become evident at
a later stage.

Since the introduction of the special prin-
ciple of relativity has been justified, every in-
tellect which strives after generalisation must
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feel the temptation to venture the step to-
wards the general principle of relativity. But a
simple and apparently quite reliable consider-
ation seems to suggest that, for the present at
any rate, there is little hope of success in such
an attempt. Let us imagine ourselves trans-
ferred to our old friend the railway carriage,
which is travelling at a uniform rate. As long
as it is moving uniformly, the occupant of the
carriage is not sensible of its motion, and it is
for this reason that he can un-reluctantly in-
terpret the facts of the case as indicating that
the carriage is at rest, but the embankment
in motion. Moreover, according to the spe-
cial principle of relativity, this interpretation
is quite justified also from a physical point of
view.

If the motion of the carriage is now
changed into a non-uniform motion, as for
instance by a powerful application of the
brakes, then the occupant of the carriage ex-
periences a correspondingly powerful jerk for-
wards. The retarded motion is manifested
in the mechanical behaviour of bodies rela-
tive to the person in the railway carriage.
The mechanical behaviour is different from
that of the case previously considered, and
for this reason it would appear to be impos-
sible that the same mechanical laws hold rel-
atively to the non-uniformly moving carriage,
as hold with reference to the carriage when
at rest or in uniform motion. At all events it
is clear that the Galileian law does not hold
with respect to the non-uniformly moving car-
riage. Because of this, we feel compelled at
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the present juncture to grant a kind of abso-
lute physical reality to non-uniform motion, in
opposition to the general principle of relativ-
ity. But in what follows we shall soon see that
this conclusion cannot be maintained.
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IX. The
Gravitational Field

“If we pick up a stone and then let it go, why
does it fall to the ground?” The usual answer
to this question is: “Because it is attracted by
the earth.” Modern physics formulates the an-
swer rather differently for the following rea-
son. As a result of the more careful study of
electromagnetic phenomena, we have come to
regard action at a distance as a process im-
possible without the intervention of some in-
termediary medium. If, for instance, a magnet
attracts a piece of iron, we cannot be content
to regard this as meaning that the magnet
acts directly on the iron through the interme-
diate empty space, but we are constrained to
imagine—after the manner of Faraday—that
the magnet always calls into being something
physically real in the space around it, that
something being what we call a “magnetic
field.” In its turn this magnetic field operates
on the piece of iron, so that the latter strives
to move towards the magnet. We shall not dis-
cuss here the justification for this incidental
conception, which is indeed a somewhat arbi-
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trary one. We shall only mention that with its
aid electromagnetic phenomena can be theo-
retically represented much more satisfactorily
than without it, and this applies particularly
to the transmission of electromagnetic waves.
The effects of gravitation also are regarded in
an analogous manner.

The action of the earth on the stone takes
place indirectly. The earth produces in its sur-
roundings a gravitational field, which acts on
the stone and produces its motion of fall. As
we know from experience, the intensity of the
action on a body diminishes according to a
quite definite law, as we proceed farther and
farther away from the earth. From our point
of view this means: The law governing the
properties of the gravitational field in space
must be a perfectly definite one, in order cor-
rectly to represent the diminution of gravita-
tional action with the distance from operative
bodies. It is something like this: The body (e.g.
the earth) produces a field in its immediate
neighbourhood directly; the intensity and di-
rection of the field at points farther removed
from the body are thence determined by the
law which governs the properties in space of
the gravitational fields themselves.

In contrast to electric and magnetic fields,
the gravitational field exhibits a most remark-
able property, which is of fundamental impor-
tance for what follows. Bodies which are mov-
ing under the sole influence of a gravitational
field receive an acceleration, which does not
in the least depend either on the material or
on the physical state of the body. For instance,
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a piece of lead and a piece of wood fall in ex-
actly the same manner in a gravitational field
(in vacuo), when they start off from rest or
with the same initial velocity. This law, which
holds most accurately, can be expressed in a
different form in the light of the following con-
sideration.

According to Newton’s law of motion, we
have

(Force) = (inertial mass)× (acceleration),

where the “inertial mass” is a characteristic
constant of the accelerated body. If now gravi-
tation is the cause of the acceleration, we then
have17

(Force) = (gravitational mass)×
(gravitational intensity),

where the “gravitational mass” is likewise a
characteristic constant for the body. From
these two relations follows:

(acceleration) =
(gravitational mass)

(inertial mass)
×

(gravitational intensity).

If now, as we find from experience, the ac-
celeration is to be independent of the nature

17For editing reasons, in the following two ex-
pressions the phrase “intensity of the gravitational
field” has been replaced by the phrase “gravitational
intensity”—R. Burkey.
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and the condition of the body and always the
same for a given gravitational field, then the
ratio of the gravitational to the inertial mass
must likewise be the same for all bodies. By a
suitable choice of units we can thus make this
ratio equal to unity. We then have the follow-
ing law: The gravitational mass of a body is
equal to its inertial mass.

It is true that this important law had hith-
erto been recorded in mechanics, but it had
not been interpreted. A satisfactory interpre-
tation can be obtained only if we recognise
the following fact: The same quality of a body
manifests itself according to circumstances as
“inertia” or as “weight” (lit. “heaviness”). In
the following section we shall show to what
extent this is actually the case, and how this
question is connected with the general postu-
late of relativity.



XX. The Equality of
Inertial and
Gravitational Mass
as an Argument for
the General
Postulate of
Relativity

We imagine a large portion of empty space,
so far removed from stars and other appre-
ciable masses that we have before us approx-
imately the conditions required by the fun-
damental law of Galilei. It is then possible
to choose a Galileian reference-body for this
part of space (world), relative to which points
at rest remain at rest and points in motion
continue permanently in uniform rectilinear
motion. As reference-body let us imagine a
spacious chest resembling a room with an ob-
server inside who is equipped with appara-
tus. Gravitation naturally does not exist for
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this observer. He must fasten himself with
strings to the floor, otherwise the slightest im-
pact against the floor will cause him to rise
slowly towards the ceiling of the room.

To the middle of the lid of the chest is fixed
externally a hook with rope attached, and now
a “being” (what kind of a being is immaterial
to us) begins pulling at this with a constant
force. The chest together with the observer
then begin to move “upwards” with a uni-
formly accelerated motion. In course of time
their velocity will reach unheard-of values—
provided that we are viewing all this from an-
other reference-body which is not being pulled
with a rope.

But how does the man in the chest regard
the process? The acceleration of the chest will
be transmitted to him by the reaction of the
floor of the chest. He must therefore take up
this pressure by means of his legs if he does
not wish to be laid out full length on the floor.
He is then standing in the chest in exactly the
same way as anyone stands in a room of a
house on our earth. If he release a body which
he previously had in his hand, the accelera-
tion of the chest will no longer be transmitted
to this body, and for this reason the body will
approach the floor of the chest with an accel-
erated relative motion. The observer will fur-
ther convince himself that the acceleration of
the body towards the floor of the chest is al-
ways of the same magnitude, whatever kind
of body he may happen to use for the experi-
ment.

Relying on his knowledge of the gravita-
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tional field (as it was discussed in the preced-
ing section), the man in the chest will thus
come to the conclusion that he and the chest
are in a gravitational field which is constant
with regard to time. Of course he will be puz-
zled for a moment as to why the chest does
not fall in this gravitational field. Just then,
however, he discovers the hook in the middle
of the lid of the chest and the rope which is at-
tached to it, and he consequently comes to the
conclusion that the chest is suspended at rest
in the gravitational field.

Ought we to smile at the man and say that
he errs in his conclusion? I do not believe
we ought if we wish to remain consistent; we
must rather admit that his mode of grasp-
ing the situation violates neither reason nor
known mechanical laws. Even though it is be-
ing accelerated with respect to the “Galileian
space” first considered, we can nevertheless
regard the chest as being at rest. We have
thus good grounds for extending the princi-
ple of relativity to include bodies of reference
which are accelerated with respect to each
other, and as a result we have gained a pow-
erful argument for a generalised postulate of
relativity.

We must note carefully that the possibility
of this mode of interpretation rests on the fun-
damental property of the gravitational field
of giving all bodies the same acceleration, or,
what comes to the same thing, on the law
of the equality of inertial and gravitational
mass. If this natural law did not exist, the
man in the accelerated chest would not be
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able to interpret the behaviour of the bodies
around him on the supposition of a gravita-
tional field, and he would not be justified on
the grounds of experience in supposing his
reference-body to be “at rest.”

Suppose that the man in the chest fixes a
rope to the inner side of the lid, and that he at-
taches a body to the free end of the rope. The
result of this will be to stretch the rope so that
it will hang “vertically” downwards. If we ask
for an opinion of the cause of tension in the
rope, the man in the chest will say: “The sus-
pended body experiences a downward force in
the gravitational field, and this is neutralised
by the tension of the rope; what determines
the magnitude of the tension of the rope is
the gravitational mass of the suspended body.”
On the other hand, an observer who is poised
freely in space will interpret the condition of
things thus: “The rope must perforce take
part in the accelerated motion of the chest,
and it transmits this motion to the body at-
tached to it. The tension of the rope is just
large enough to effect the acceleration of the
body. That which determines the magnitude
of the tension of the rope is the inertial mass
of the body.” Guided by this example, we see
that our extension of the principle of relativity
implies the necessity of the law of the equal-
ity of inertial and gravitational mass. Thus
we have obtained a physical interpretation of
this law.

From our consideration of the accelerated
chest we see that a general theory of relativ-
ity must yield important results on the laws
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of gravitation. In point of fact, the system-
atic pursuit of the general idea of relativity
has supplied the laws satisfied by the gravi-
tational field. Before proceeding farther, how-
ever, I must warn the reader against a mis-
conception suggested by these considerations.
A gravitational field exists for the man in the
chest, despite the fact that there was no such
field for the co-ordinate system first chosen.
Now we might easily suppose that the exis-
tence of a gravitational field is always only
an apparent one. We might also think that,
regardless of the kind of gravitational field
which may be present, we could always choose
another reference-body such that no gravita-
tional field exists with reference to it. This is
by no means true for all gravitational fields,
but only for those of quite special form. It
is, for instance, impossible to choose a body
of reference such that, as judged from it, the
gravitational field of the earth (in its entirety)
vanishes.

We can now appreciate why that argument
is not convincing, which we brought forward
against the general principle of relativity at
the end of Section XVIII. It is certainly true
that the observer in the railway carriage ex-
periences a jerk forwards as a result of the
application of the brake, and that he recog-
nises in this the non-uniformity of motion (re-
tardation) of the carriage. But he is compelled
by nobody to refer this jerk to a “real” ac-
celeration (retardation) of the carriage. He
might also interpret his experience thus: “My
body of reference (the carriage) remains per-
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manently at rest. With reference to it, how-
ever, there exists (during the period of ap-
plication of the brakes) a gravitational field
which is directed forwards and which is vari-
able with respect to time. Under the influ-
ence of this field, the embankment together
with the earth moves non-uniformly in such
a manner that their original velocity in the
backwards direction is continuously reduced.”



XXI. In What
Respects Are the
Foundations of
Classical
Mechanics and of
the Special Theory
of Relativity
Unsatisfactory?

We have already stated several times that
classical mechanics starts out from the follow-
ing law: Material particles sufficiently far re-
moved from other material particles continue
to move uniformly in a straight line or con-
tinue in a state of rest. We have also repeat-
edly emphasised that this fundamental law
can only be valid for bodies of reference K
which possess certain unique states of motion,
and which are in uniform translational mo-
tion relative to each other. Relative to other
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reference-bodies K the law is not valid. Both
in classical mechanics and in the special the-
ory of relativity we therefore differentiate be-
tween reference-bodies K relative to which
the recognised “laws of nature” can be said to
hold, and reference-bodies K relative to which
these laws do not hold.

But no person whose mode of thought is
logical can rest satisfied with this condition
of things. He asks: “How does it come that
certain reference-bodies (or their states of mo-
tion) are given priority over other reference-
bodies (or their states of motion)? What is the
reason for this preference?” In order to show
clearly what I mean by this question, I shall
make use of a comparison.

I am standing in front of a gas range.
Standing alongside of each other on the range
are two pans so much alike that one may be
mistaken for the other. Both are half full of
water. I notice that steam is being emitted
continuously from the one pan, but not from
the other. I am surprised at this, even if I have
never seen either a gas range or a pan before.
But if I now notice a luminous something of
bluish colour under the first pan but not un-
der the other, I cease to be astonished, even if
I have never before seen a gas flame. For I can
only say that this bluish something will cause
the emission of the steam, or at least possibly
it may do so. If, however, I notice the bluish
something in neither case, and if I observe
that the one continuously emits steam whilst
the other does not, then I shall remain aston-
ished and dissatisfied until I have discovered
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some circumstance to which I can attribute
the different behaviour of the two pans.

Analogously, I seek in vain for a real some-
thing in classical mechanics (or in the spe-
cial theory of relativity) to which I can at-
tribute the different behaviour of bodies con-
sidered with respect to the reference-systems
K and K ′.18 Newton saw this objection and at-
tempted to invalidate it, but without success.
But E. Mach recognised it most clearly of all,
and because of this objection he claimed that
mechanics must be placed on a new basis. It
can only be got rid of by means of a physics
which is conformable to the general principle
of relativity, since the equations of such a the-
ory hold for every body of reference, whatever
may be its state of motion.

18The objection is of importance more especially
when the state of motion of the reference-body is of
such a nature that it does not require any external
agency for its maintenance, e.g. in the case when the
reference-body is rotating uniformly.
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XXII. A Few
Inferences from
the General Theory
of Relativity

The considerations of Section XX show that
the general theory of relativity puts us in a
position to derive properties of the gravita-
tional field in a purely theoretical manner. Let
us suppose, for instance, that we know the
space-time “course” for any natural process
whatsoever, as regards the manner in which
it takes place in the Galileian domain relative
to a Galileian body of reference K. By means
of purely theoretical operations (i.e. simply by
calculation) we are then able to find how this
known natural process appears, as seen from
a reference-body K ′ which is accelerated rela-
tively to K. But since a gravitational field ex-
ists with respect to this new body of reference
K ′, our consideration also teaches us how the
gravitational field influences the process stud-
ied.

For example, we learn that a body which
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is in a state of uniform rectilinear motion
with respect to K (in accordance with the law
of Galilei) is executing an accelerated and in
general curvilinear motion with respect to the
accelerated reference-body K ′ (chest). This
acceleration or curvature corresponds to the
influence on the moving body of the gravita-
tional field prevailing relatively to K ′. It is
known that a gravitational field influences the
movement of bodies in this way, so that our
consideration supplies us with nothing essen-
tially new.

However, we obtain a new result of fun-
damental importance when we carry out the
analogous consideration for a ray of light.
With respect to the Galileian reference-body
K, such a ray of light is transmitted recti-
linearly with the velocity c. It can easily
be shown that the path of the same ray of
light is no longer a straight line when we con-
sider it with reference to the accelerated chest
(reference-body K ′). From this we conclude,
that, in general, rays of light are propagated
curvilinearly in gravitational fields. In two re-
spects this result is of great importance.

In the first place, it can be compared with
the reality. Although a detailed examination
of the question shows that the curvature of
light rays required by the general theory of
relativity is only exceedingly small for the
gravitational fields at our disposal in practice,
its estimated magnitude for light rays pass-
ing the sun at grazing incidence is neverthe-
less 1.7 seconds of arc. This ought to mani-
fest itself in the following way. As seen from
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the earth, certain fixed stars appear to be in
the neighbourhood of the sun, and are thus
capable of observation during a total eclipse
of the sun. At such times, these stars ought
to appear to be displaced outwards from the
sun by an amount indicated above, as com-
pared with their apparent position in the sky
when the sun is situated at another part of the
heavens. The examination of the correctness
or otherwise of this deduction is a problem of
the greatest importance, the early solution of
which is to be expected of astronomers.19

In the second place our result shows that,
according to the general theory of relativity,
the law of the constancy of the velocity of light
in vacuo, which constitutes one of the two fun-
damental assumptions in the special theory of
relativity and to which we have already fre-
quently referred, cannot claim any unlimited
validity. A curvature of rays of light can only
take place when the velocity of propagation
of light varies with position. Now we might
think that as a consequence of this, the spe-
cial theory of relativity and with it the whole
theory of relativity would be laid in the dust.
But in reality this is not the case. We can only
conclude that the special theory of relativity
cannot claim an unlimited domain of validity;
its result hold only so long as we are able to

19By means of the star photographs of two expedi-
tions equipped by a Joint Committee of the Royal and
Royal Astronomical Societies, the existence of the de-
flection of light demanded by theory was confirmed dur-
ing the solar eclipse of 29th May, 1919. (Cf. Appendix
III.)
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disregard the influences of gravitational fields
on the phenomena (e.g. of light).

Since it has often been contended by op-
ponents of the theory of relativity that the
special theory of relativity is overthrown by
the general theory of relativity, it is per-
haps advisable to make the facts of the case
clearer by means of an appropriate compar-
ison. Before the development of electrody-
namics the laws of electrostatics and the laws
of electricity were regarded indiscriminately.
At the present time we know that electric
fields can be derived correctly from electro-
static considerations only for the case, which
is never strictly realised, in which the electri-
cal masses are quite at rest relatively to each
other, and to the co-ordinate system. Should
we be justified in saying that for this rea-
son electrostatics is overthrown by the field-
equations of Maxwell in electrodynamics? Not
in the least. Electrostatics is contained in
electrodynamics as a limiting case; the laws of
the latter lead directly to those of the former
for the case in which the fields are invariable
with regard to time. No fairer destiny could
be allotted to any physical theory, than that
it should of itself point out the way to the in-
troduction of a more comprehensive theory, in
which it lives on as a limiting case.

In the example of the transmission of light
just dealt with, we have seen that the general
theory of relativity enables us to derive theo-
retically the influence of a gravitational field
on the course of natural processes, the laws
of which are already known when a gravita-
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tional field is absent. But the most attractive
problem, to the solution of which the general
theory of relativity supplies the key, concerns
the investigation of the laws satisfied by the
gravitational field itself. Let us consider this
for a moment.

We are acquainted with space-time do-
mains which behave (approximately) in a
“Galileian” fashion under suitable choice of
reference-body, i.e. domains in which gravita-
tional fields are absent. If we now refer such a
domain to a reference-body K ′ possessing any
kind of motion, then relative to K ′ there exists
a gravitational field which is variable with re-
spect to space and time.20 The character of
this field will of course depend on the motion
chosen for K ′. According to the general the-
ory of relativity, the general law of the grav-
itational field must be satisfied for all grav-
itational fields obtainable in this way. Even
though by no means all gravitational fields
can be produced in this way, yet we may enter-
tain the hope that the general law of gravita-
tion will be derivable from such gravitational
fields of a special kind. This hope has been re-
alised in the most beautiful manner. But be-
tween the clear vision of this goal and its ac-
tual realisation it was necessary to surmount
a serious difficulty, and as this lies deep at the
root of things, I dare not withhold it from the
reader. We require to extend our ideas of the
space-time continuum still farther.

20This follows from a generalisation of the discussion
in Section XX.
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XXIII. Behaviour of
Clocks and
Measuring Rods on
a Rotating Body of
Reference

Hitherto I have purposely refrained from
speaking about the physical interpretation of
space- and time-data in the case of the general
theory of relativity. As a consequence, I am
guilty of a certain slovenliness of treatment,
which, as we know from the special theory of
relativity, is far from being unimportant and
pardonable. It is now high time that we rem-
edy this defect; but I would mention at the
outset, that this matter lays no small claims
on the patience and on the power of abstrac-
tion of the reader.

We start off again from quite special cases,
which we have frequently used before. Let
us consider a space-time domain in which
no gravitational fields exists relative to a
reference-body K whose state of motion has
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been suitably chosen. K is then a Galileian
reference-body as regards the domain consid-
ered, and the results of the special theory of
relativity hold relative to K. Let us suppose
the same domain referred to a second body of
reference K ′, which is rotating uniformly with
respect to K. In order to fix our ideas, we shall
imagine K ′ to be in the form of a plane circu-
lar disc, which rotates uniformly in its own
plane about its centre. An observer who is
sitting eccentrically on the disc K ′ is sensi-
ble of a force which acts outwards in a radial
direction, and which would be interpreted as
an effect of inertia (centrifugal force) by an
observer who was at rest with respect to the
original reference-body K. But the observer
on the disc may regard his disc as a reference-
body which is “at rest”; on the basis of the
general principle of relativity he is justified
in doing this. The force acting on himself,
and in fact on all other bodies which are at
rest relative to the disc, he regards as the ef-
fect of a gravitational field. Nevertheless, the
space-distribution of this gravitational field is
of a kind that would not be possible on New-
ton’s theory of gravitation.21 But since the ob-
server believes in the general theory of rela-
tivity, this does not disturb him; he is quite in
the right when he believes that a general law
of gravitation can be formulated—a law which
not only explains the motion of the stars cor-

21The field disappears at the centre of the disc and
increases proportionally to the distance from the centre
as we proceed outwards.
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rectly, but also the field of force experienced
by himself.

The observer performs experiments on his
circular disc with clocks and measuring-rods.
In doing so, it is his intention to arrive at
exact definitions for the signification of time-
and space-data with reference to the circular
disc K ′, these definitions being based on his
observations. What will be his experience in
this enterprise?

To start with, he places one of two iden-
tically constructed clocks at the centre of the
circular disc, and the other on the edge of the
disc, so that they are at rest relative to it.
We now ask ourselves whether both clocks go
at the same rate from the standpoint of the
non-rotating Galileian reference-body K. As
judged from this body, the clock at the centre
of the disc has no velocity, whereas the clock
at the edge of the disc is in motion relative
to K in consequence of the rotation. Accord-
ing to a result obtained in Section XII, it fol-
lows that the latter clock goes at a rate perma-
nently slower than that of the clock at the cen-
tre of the circular disc, i.e. as observed from
K. It is obvious that the same effect would be
noted by an observer whom we will imagine
sitting alongside his clock at the centre of the
circular disc. Thus on our circular disc, or, to
make the case more general, in every gravita-
tional field, a clock will go more quickly or less
quickly, according to the position in which the
clock is situated (at rest). For this reason it
is not possible to obtain a reasonable defini-
tion of time with the aid of clocks which are
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arranged at rest with respect to the body of
reference. A similar difficulty presents itself
when we attempt to apply our earlier defini-
tion of simultaneously in such a case, but I do
not wish to go any farther into this question.

Moreover, at this stage the definition of
the space co-ordinates also presents unsur-
mountable difficulties. If the observer applies
his standard measuring-rod (a rod which is
short as compared with the radius of the disc)
tangentially to the edge of the disc, then, as
judged from the Galileian system, the length
of this rod will be less than 1, since, according
to Section XII, moving bodies suffer a short-
ening in the direction of the motion. On the
other hand, the measuring-rod will not expe-
rience a shortening in length, as judged from
K, if it is applied to the disc in the direction
of the radius. If, then, the observer first mea-
sures the circumference of the disc with his
measuring-rod and then the diameter of the
disc, on dividing the one by the other, he will
not obtain as quotient the familiar number
π = 3.14 . . ., but a larger number,22 whereas
of course, for a disc which is at rest with re-
spect to K, this operation would yield π ex-
actly. This proves that the propositions of Eu-
clidean geometry cannot hold exactly on the
rotating disc, nor in general in a gravitational
field, at least if we attribute the length 1 to the

22Throughout this consideration we have to use the
Galileian (non-rotating) system K as reference-body,
since we may only assume the validity of the results
of the special theory of relativity relative to K (relative
to K ′ a gravitational field prevails).
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rod in all positions and in every orientation.
Hence the idea of a straight line also loses its
meaning. We are therefore not in a position
to define exactly the co-ordinates x, y, z rela-
tive to the disc by means of the method used
in discussing the special theory, and as long as
the co-ordinates and times of events have not
been defined we cannot assign an exact mean-
ing to the natural laws in which these occur.

Thus all our previous conclusions based on
general relativity would appear to be called in
question. In reality we must make a subtle
detour in order to be able to apply the postu-
late of general relativity exactly. I shall pre-
pare the reader for this in the following para-
graphs.
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XXIV. Euclidean
and Non-Euclidean
Continuum

The surface of a marble table is spread out in
front of me. I can get from any one point on
this table to any other point by passing con-
tinuously from one point to a “neighbouring”
one, and repeating this process a (large) num-
ber of times, or, in other words, by going from
point to point without executing jumps. I am
sure the reader will appreciate with sufficient
clearness, what I mean here by “neighbour-
ing” and by “jumps” (if he is not too pedantic).
We express this property of the surface by de-
scribing the latter as a continuum.

Let us now imagine that a large number
of little rods of equal length have been made,
their lengths being small compared with the
dimensions of the marble slab. When I say
they are of equal length, I mean that one can
be laid on any other without the ends over-
lapping. We next lay four of these little rods
on the marble slab so that they constitute
a quadrilateral figure (a square), the diago-
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nals of which are equally long. To ensure the
equality of the diagonals, we make use of a
little testing-rod. To this square we add simi-
lar ones, each of which has one rod in common
with the first. We proceed in like manner with
each of these squares until finally the whole
marble slab is laid out with squares. The ar-
rangement is such, that each side of a square
belongs to two squares and each corner to four
squares.

It is a veritable wonder that we can carry
our this business without getting into the
greatest difficulties. We only need to think
of the following. If at any moment three
squares meet at a corner, then two sides of the
fourth square are already laid, and as a con-
sequence, the arrangement of the remaining
two sides of the square is already completely
determined. But I am now no longer able to
adjust the quadrilateral so that its diagonals
may be equal. If they are equal of their own
accord, then this is an especial favour of the
marble slab and of the little rods about which
I can only be thankfully surprised. We must
needs experience many such surprises if the
construction is to be successful.

If everything has really gone smoothly,
then I say that the points of the marble slab
constitute a Euclidean continuum with re-
spect to the little rod, which has been used as
a “distance” (line-interval). By choosing one
corner of a square as “origin,” I can charac-
terise every other corner of a square with ref-
erence to this origin by means of two num-
bers. I only need state how many rods I
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must pass over when, starting from the origin,
I proceed towards the “right” and then “up-
wards,” in order to arrive at the corner of the
square under consideration. These two num-
bers are then the “Cartesian co-ordinates” of
this corner with reference to the “Cartesian
co-ordinate system” which is determined by
the arrangement of little rods.

By making use of the following modifica-
tion of this abstract experiment, we recognise
that there must also be cases in which the
experiment would be unsuccessful. We shall
suppose that the rods “expand” by an amount
proportional to the increase of temperature.
We heat the central part of the marble slab,
but not the periphery, in which case two of
our little rods can still be brought into coin-
cidence at every position on the table. But our
construction of squares must necessarily come
into disorder during the heating, because the
little rods on the central region of the table ex-
pand, whereas those on the outer part do not.

With reference to our little rods—defined
as unit lengths—the marble slab is no longer
a Euclidean continuum, and we are also no
longer in the position of defining Cartesian
co-ordinates directly with their aid, since the
above construction can no longer be carried
out. But since there are other things which
are not influenced in a similar manner to the
little rods (or perhaps not at all) by the tem-
perature of the table, it is possible quite nat-
urally to maintain the point of view that the
marble slab is a “Euclidean continuum.” This
can be done in a satisfactory manner by mak-
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ing a more subtle stipulation about the mea-
surement or the comparison of lengths.

But if rods of every kind (i.e. of every ma-
terial) were to behave in the same way as re-
gards the influence of temperature when they
are on the variably heated marble slab, and
if we had no other means of detecting the ef-
fect of temperature than the geometrical be-
haviour of our rods in experiments analogous
to the one described above, then our best plan
would be to assign the distance one to two
points on the slab, provided that the ends of
one of our rods could be made to coincide with
these two points; for how else should we define
the distance without our proceeding being in
the highest measure grossly arbitrary? The
method of Cartesian co-ordinates must then
be discarded, and replaced by another which
does not assume the validity of Euclidean ge-
ometry for rigid bodies.23 The reader will no-
tice that the situation depicted here corre-
sponds to the one brought about by the gen-
eral postulate of relativity (Section XXIII).

NOTE:—Gauss undertook the task of
treating this two-dimensional geometry from
first principles, without making use of the fact
that the surface belongs to a Euclidean contin-
uum of three dimensions. If we imagine con-
structions to be made with rigid rods in the
surface (similar to that above with the mar-

23Mathematicians have been confronted with our
problem in the following form. If we are given a surface
(e.g. an ellipsoid) in Euclidean three-dimensional space,
then there exists for this surface a two-dimensional ge-
ometry, just as much as for a plane surface.
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ble slab), we should find that different laws
hold for these from those resulting on the ba-
sis of Euclidean plane geometry. The surface
is not a Euclidean continuum with respect to
the rods, and we cannot define Cartesian co-
ordinates in the surface. Gauss indicated the
principles according to which we can treat the
geometrical relationships in the surface, and
thus pointed out the way to the method of
Riemann of treating multi-dimensional, non-
Euclidean continua. Thus it is that mathe-
maticians long ago solved the formal problems
to which we are led by the general postulate of
relativity.
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XXV. Gaussian
Co-ordinates

FIG. 4.

According to Gauss, this combined ana-
lytical and geometrical mode of handling the
problem can be arrived at in the following
way. We imagine a system of arbitrary curves
(see Fig. 4) drawn on the surface of the table.
These we designate as u-curves, and we indi-
cate each of them by means of a number. The
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curves u = 1, u = 2 and u = 3 are drawn in the
diagram. Between the curves u = 1 and u = 2
we must imagine an infinitely large number to
be drawn, all of which correspond to real num-
bers lying between 1 and 2. We have then a
system of u-curves, and this “infinitely dense”
system covers the whole surface of the table.
These u-curves must not intersect each other,
and through each point of the surface one and
only one curve must pass. Thus a perfectly
definite value of u belongs to every point on
the surface of the marble slab. In like man-
ner we imagine a system of v-curves drawn
on the surface. These satisfy the same condi-
tions as the u-curves, they are provided with
numbers in a corresponding manner, and they
may likewise be of arbitrary shape. It follows
that a value of u and a value of v belong to
every point on the surface of the table. We
call these two numbers the co-ordinates of the
surface of the table (Gaussian co-ordinates).
For example, the point P in the diagram has
the Gaussian co-ordinates u = 3, v = 1. Two
neighbouring points P and P ′ on the surface
then correspond to the co-ordinates

P : u, v

P ′ : u + du, v + dv

where du and dv signify very small numbers.
In a similar manner we may indicate the dis-
tance (line-interval) between P and P ′, as
measured with a little rod, by means of the
very small number ds. Then according to
Gauss we have
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ds2 = g11 + 2g12du dv + g22dv2,

where g11, g12, g22, are magnitudes which de-
pend in a perfectly definite way on u and v.
The magnitudes g11, g12, and g22 determine the
behaviour of the rods relative to the u-curves
and v-curves, and thus also relative to the
surface of the table. For the case in which
the points of the surface considered form a
Euclidean continuum with reference to the
measuring-rods, but only in this case, it is pos-
sible to draw the u-curves and v-curves and to
attach numbers to them, in such a manner,
that we simply have:

ds2 = du2 + dv2.

Under these conditions, the u-curves and
v-curves are straight lines in the sense of Eu-
clidean geometry, and they are perpendicular
to each other. Here the Gaussian co-ordinates
are simply Cartesian ones. It is clear that
Gauss co-ordinates are nothing more than an
association of two sets of numbers with the
points of the surface considered, of such a
nature that numerical values differing very
slightly from each other are associated with
neighbouring points “in space.”

So far, these considerations hold for a con-
tinuum of two dimensions. But the Gaus-
sian method can be applied also to a contin-
uum of three, four or more dimensions. If,
for instance, a continuum of four dimensions
be supposed available, we may represent it
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in the following way. With every point of
the continuum we associate arbitrarily four
numbers, x1, x2, x3, x4, which are known as “co-
ordinates.” Adjacent points correspond to ad-
jacent values of the co-ordinates. If a distance
ds is associated with the adjacent points P
and P ′, this distance being measurable and
well-defined from a physical point of view,
then the following formula holds:

ds2 = g11dx2
1 + 2g12dx1dx2 + . . . + g44dx2

4,

where the magnitudes g11 etc., have values
which vary with the position in the contin-
uum. Only when the continuum is a Eu-
clidean one is it possible to associate the co-
ordinates x1 . . . x4 with the points of the con-
tinuum so that we have simply

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4.

In this case relations hold in the four-
dimensional continuum which are analogous
to those holding in our three-dimensional
measurements.

However, the Gauss treatment for ds2

which we have given above is not always pos-
sible. It is only possible when sufficiently
small regions of the continuum under consid-
eration may be regarded as Euclidean con-
tinua. For example, this obviously holds in
the case of the marble slab of the table and
local variation of temperature. The tempera-
ture is practically constant for a small part of
the slab, and thus the geometrical behaviour
of the rods is almost as it ought to be according
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to the rules of Euclidean geometry. Hence the
imperfections of the construction of squares in
the previous section do not show themselves
clearly until this construction is extended over
a considerable portion of the surface of the ta-
ble.

We can sum this up as follows: Gauss in-
vented a method for the mathematical treat-
ment of continua in general, in which “size-
relations” (“distances” between neighbouring
points) are defined. To every point of a
continuum are assigned as many numbers
(Gaussian co-ordinates) as the continuum has
dimensions. This is done in such a way,
that only one meaning can be attached to
the assignment, and that numbers (Gaussian
co-ordinates) which differ by an indefinitely
small amount are assigned to adjacent points.
The Gaussian co-ordinate system is a logi-
cal generalisation of the Cartesian co-ordinate
system. It is also applicable to non-Euclidean
continua, but only when, with respect to the
defined “size” or “distance,” small parts of the
continuum under consideration behave more
nearly like a Euclidean system, the smaller
the part of the continuum under our notice.
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XXVI. The
Space-Time
Continuum of the
Special Theory of
Relativity
Considered as a
Euclidean
Continuum

We are now in a position to formulate more ex-
actly the idea of Minkowski, which was only
vaguely indicated in Section XVII. In accor-
dance with the special theory of relativity, cer-
tain co-ordinate systems are given preference
for the description of the four-dimensional,
space-time continuum. We called these “Gali-
leian co-ordinate systems.” For these systems,
the four co-ordinates x, y, z, t, which deter-
mine an event or—in other words—a point of
the four-dimensional continuum, are defined
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physically in a simple manner, as set forth in
detail in the first part of this book. For the
transition from one Galileian system to an-
other, which is moving uniformly with refer-
ence to the first, the equations of the Lorentz
transformation are valid. These last form the
basis for the derivation of deductions from the
special theory of relativity, and in themselves
they are nothing more than the expression of
the universal validity of the law of transmis-
sion of light for all Galileian systems of refer-
ence.

Minkowski found that the Lorentz trans-
formations satisfy the following simple con-
ditions. Let us consider two neighbouring
events, the relative position of which in the
four-dimensional continuum is given with re-
spect to a Galileian reference-body K by the
space co-ordinate differences dx, dy, dz and the
time-difference dt. With reference to a second
Galileian system we shall suppose that the
corresponding differences for these two events
are dx′, dy′, dz′, dt′. Then these magnitudes al-
ways fulfil the condition24

dx2 +dy2 +dz2−c2dt2 = dx′2 +dy′2 +dz′2−c2dt′2.

The validity of the Lorentz transformation
follows from this condition. We can express
this as follows: The magnitude

ds2 = dx2 + dy2 + dz2 − c2dt2,

24Cf. Appendices I and II. The relations which are de-
rived there for the co-ordinates themselves are valid
also for co-ordinate differences, and thus also for co-
ordinate differentials (indefinitely small differences).
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which belongs to two adjacent points of the
four-dimensional space-time continuum, has
the same value for all selected (Galileian)
reference-bodies. If we replace x, y, z,

√
−1ct,

by x1, x2, x3, x4, we also obtain the result that

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

is independent of the choice of the body of
reference. We call the magnitude ds the
“distance” apart of the two events or four-
dimensional points.

Thus, if we choose as time-variable the
imaginary variable

√
−1ct instead of the real

quantity t, we can regard the space-time
continuum—in accordance with the special
theory of relativity—as a “Euclidean” four-
dimensional continuum, a result which fol-
lows from the considerations of the preceding
section.
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XXVII. The
Space-Time
Continuum of the
General Theory of
Relativity is not a
Euclidean
Continuum

In the first part of this book we were able to
make use of space-time co-ordinates which al-
lowed of a simple and direct physical interpre-
tation, and which, according to Section XXVI,
can be regarded as four-dimensional Carte-
sian co-ordinates. This was possible on the ba-
sis of the law of the constancy of the velocity of
light. But according to Section XXI, the gen-
eral theory of relativity cannot retain this law.
On the contrary, we arrived at the result that
according to this latter theory the velocity of
light must always depend on the coordinates
when a gravitational field is present. In con-
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nection with a specific illustration in Section
XXIII, we found that the presence of a gravi-
tational field invalidates the definition of the
co-ordinates and the time, which led us to our
objective in the special theory of relativity.

In view of the results of these considera-
tions we are led to the conviction that, accord-
ing to the general principle of relativity, the
space-time continuum cannot be regarded as
a Euclidean one, but that here we have the
general case, corresponding to the marble slab
with local variations of temperature, and with
which we made acquaintance as an example
of a two-dimensional continuum. Just as it
was there impossible to construct a Cartesian
co-ordinate system from equal rods, so here it
is impossible to build up a system (reference-
body) from rigid bodies and clocks, which shall
be of such a nature that measuring-rods and
clocks, arranged rigidly with respect to one
another, shall indicate position and time di-
rectly. Such was the essence of the diffi-
culty with which we were confronted in Sec-
tion XXIII.

But the considerations of Sections XXV
and XXVI show us the way to surmount
this difficulty. We refer the four-dimensional
space-time continuum in an arbitrary man-
ner to Gauss co-ordinates. We assign to every
point of the continuum (event) four numbers,
x1, x2, x3, x4 (co-ordinates), which have not the
least direct physical significance, but only
serve the purpose of numbering the points
of the continuum in a definite but arbitrary
manner. This arrangement does not even
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need to be of such a kind that we must re-
gard x1, x2, x3 as “space” co-ordinates and x4

as a “time” co-ordinate.
The reader may think that such a descrip-

tion of the world would be quite inadequate.
What does it mean to assign to an event
the particular co-ordinates x1, x2, x3, x4, if in
themselves these co-ordinates have no signif-
icance? More careful consideration shows,
however, that this anxiety is unfounded. Let
us consider, for instance, a material point with
any kind of motion. If this point had only a
momentary existence without duration, then
it would be described in space-time by a sin-
gle system of values x1, x2, x3, x4. Thus its per-
manent existence must be characterised by
an infinitely large number of such systems
of values, the co-ordinate values of which are
so close together as to give continuity; corre-
sponding to the material point, we thus have a
(uni-dimensional) line in the four-dimensional
continuum. In the same way, any such lines in
our continuum correspond to many points in
motion. The only statements having regard to
these points which can claim a physical exis-
tence are in reality the statements about their
encounters. In our mathematical treatment,
such an encounter is expressed in the fact that
the two lines which represent the motions of
the points in question have a particular sys-
tem of co-ordinate values, x1, x2, x3, x4, in com-
mon. After mature consideration the reader
will doubtless admit that in reality such en-
counters constitute the only actual evidence
of a time-space nature with which we meet in
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physical statements.
When we were describing the motion of

a material point relative to a body of refer-
ence, we stated nothing more than the en-
counters of this point with particular points of
the reference-body. We can also determine the
corresponding values of the time by the obser-
vation of encounters of the body with clocks,
in conjunction with the observation of the en-
counter of the hands of clocks with particu-
lar points on the dials. It is just the same in
the case of space-measurements by means of
measuring-rods, as a little consideration will
show.

The following statements hold generally:
Every physical description resolves itself into
a number of statements, each of which refers
to the space-time coincidence of two events A
and B. In terms of Gaussian co-ordinates, ev-
ery such statement is expressed by the agree-
ment of their four co-ordinates x1, x2, x3, x4.
Thus in reality, the description of the time-
space continuum by means of Gauss co-
ordinates completely replaces the description
with the aid of a body of reference, without
suffering from the defects of the latter mode
of description; it is not tied down to the Eu-
clidean character of the continuum which has
to be represented.



XXVIII. Exact
Formulation of the
General Principle
of Relativity

We are now in a position to replace the pro-
visional formulation of the general principle
of relativity given in Section XVIII by an ex-
act formulation. The form there used, “All
bodies of reference K, K ′, etc., are equiva-
lent for the description of natural phenomena
(formulation of the general laws of nature),
whatever may be their state of motion,” can-
not be maintained, because the use of rigid
reference-bodies, in the sense of the method
followed in the special theory of relativity, is
in general not possible in space-time descrip-
tion. The Gauss co-ordinate system has to
take the place of the body of reference. The
following statement corresponds to the funda-
mental idea of the general principle of relativ-
ity: “All Gaussian co-ordinate systems are es-
sentially equivalent for the formulation of the
general laws of nature.”
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We can state this general principle of rel-
ativity in still another form, which renders it
yet more clearly intelligible than it is when
in the form of the natural extension of the
special principle of relativity. According to
the special theory of relativity, the equations
which express the general laws of nature pass
over into equations of the same form when,
by making use of the Lorentz transformation,
we replace the space-time variables x, y, z, t, of
a (Galileian) reference-body K by the space-
time variables x′, y′, z′, t′, of a new reference-
body K ′. According to the general theory of
relativity, on the other hand, by application of
arbitrary substitutions of the Gauss variables
x1, x2, x3, x4, the equations must pass over into
equations of the same form; for every transfor-
mation (not only the Lorentz transformation)
corresponds to the transition of one Gauss co-
ordinate system into another.

If we desire to adhere to our “old-time”
three-dimensional view of things, then we can
characterise the development which is being
undergone by the fundamental idea of the
general theory of relativity as follows: The
special theory of relativity has reference to
Galileian domains, i.e. to those in which no
gravitational field exists. In this connection
a Galileian reference-body serves as body of
reference, i.e. a rigid body the state of motion
of which is so chosen that the Galileian law
of the uniform rectilinear motion of “isolated”
material points holds relatively to it.

Certain considerations suggest that we
should refer the same Galileian domains to
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non-Galileian reference-bodies also. A gravi-
tational field of a special kind is then present
with respect to these bodies (cf. Sections XX
and XXIII).

In gravitational fields there are no such
things as rigid bodies with Euclidean proper-
ties; thus the fictitious rigid body of reference
is of no avail in the general theory of relativ-
ity. The motion of clocks is also influenced by
gravitational fields, and in such a way that a
physical definition of time which is made di-
rectly with the aid of clocks has by no means
the same degree of plausibility as in the spe-
cial theory of relativity.

For this reason non-rigid reference-bodies
are used which are as a whole not only mov-
ing in any way whatsoever, but which also
suffer alterations in form ad lib. during their
motion. Clocks, for which the law of mo-
tion is any kind, however irregular, serve for
the definition of time. We have to imagine
each of these clocks fixed at a point on the
non-rigid reference-body. These clocks sat-
isfy only the one condition, that the “read-
ings” which are observed simultaneously on
adjacent clocks (in space) differ from each
other by an indefinitely small amount. This
non-rigid reference-body, which might appro-
priately be termed a “reference-mollusk,” is
in the main equivalent to a Gaussian four-
dimensional co-ordinate system chosen arbi-
trarily. That which gives the “mollusk” a
certain comprehensibleness as compared with
the Gauss co-ordinate system is the (really
unqualified) formal retention of the separate
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existence of the space co-ordinate. Every point
on the mollusk is treated as a space-point,
and every material point which is at rest rel-
atively to it as at rest, so long as the mollusk
is considered as reference-body. The general
principle of relativity requires that all these
mollusks can be used as reference-bodies with
equal right and equal success in the formula-
tion of the general laws of nature; the laws
themselves must be quite independent of the
choice of mollusk.

The great power possessed by the general
principle of relativity lies in the comprehen-
sive limitation which is imposed on the laws
of nature in consequence of what we have seen
above.



XXIX. The Solution
of the Problem of
Gravitation on the
Basis of the
General Principle
of Relativity

If the reader has followed all our previous con-
siderations, he will have no further difficulty
in understanding the methods leading to the
solution of the problem of gravitation.

We start off from a consideration of a Gal-
ileian domain, i.e. a domain in which there
is no gravitational field relative to the Gal-
ileian reference-body K. The behaviour of
measuring-rods and clocks with reference to
K is known from the special theory of relativ-
ity, likewise the behaviour of “isolated” mate-
rial points; the latter move uniformly and in
straight lines.

Now let us refer this domain to a random
Gauss co-ordinate system or to a “mollusk” as
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reference-body K ′. Then with respect to K ′

there is a gravitational field G (of a particular
kind). We learn the behaviour of measuring-
rods and clocks and also of freely-moving ma-
terial points with reference to K ′ simply by
mathematical transformation. We interpret
this behaviour as the behaviour of measuring-
rods, clocks and material points under the in-
fluence of the gravitational field G. Hereupon
we introduce a hypothesis: that the influence
of the gravitational field on measuring-rods,
clocks and freely-moving material points con-
tinues to take place according to the same
laws, even in the case when the prevailing
gravitational field is not derivable from the
Galileian special case, simply by means of a
transformation of co-ordinates.

The next step is to investigate the space-
time behaviour of the gravitational field G,
which was derived from the Galileian spe-
cial case simply by transformation of the co-
ordinates. This behaviour is formulated in a
law, which is always valid, no matter how the
reference-body (mollusk) used in the descrip-
tion may be chosen.

This law is not yet the general law of
the gravitational field, since the gravitational
field under consideration is of a special kind.
In order to find out the general law-of-field of
gravitation we still require to obtain a gener-
alisation of the law as found above. This can
be obtained without caprice, however, by tak-
ing into consideration the following demands:
The required generalisation must likewise
satisfy the general postulate of relativity. If
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there is any matter in the domain under con-
sideration, only its inertial mass, and thus ac-
cording to Section XV only its energy is of im-
portance for its effect in exciting a field. Grav-
itational field and matter together must sat-
isfy the law of the conservation of energy (and
of impulse).

Finally, the general principle of relativ-
ity permits us to determine the influence of
the gravitational field on the course of all
those processes which take place according
to known laws when a gravitational field is
absent, i.e. which have already been fitted
into the frame of the special theory of relativ-
ity. In this connection we proceed in princi-
ple according to the method which has already
been explained for measuring-rods, clocks and
freely-moving material points.

The theory of gravitation derived in this
way from the general postulate of relativity
excels not only in its beauty; nor in remov-
ing the defect attaching to classical mechanics
which was brought to light in Section XXI; nor
in interpreting the empirical law of the equal-
ity of inertial and gravitational mass; but it
has also already explained a result of obser-
vation in astronomy, against which classical
mechanics is powerless.

If we confine the application of the theory
to the case where the gravitational fields can
be regarded as being weak, and in which all
masses move with respect to the co-ordinate
system with velocities which are small com-
pared with the velocity of light, we then ob-
tain as a first approximation the Newtonian
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theory. Thus the latter theory is obtained here
without any particular assumption, whereas
Newton had to introduce the hypothesis that
the force of attraction between mutually at-
tracting material points is inversely propor-
tional to the square of the distance between
them. If we increase the accuracy of the cal-
culation, deviations from the theory of New-
ton make their appearance, practically all of
which must nevertheless escape the test of ob-
servation owing to their smallness.

We must draw attention here to one of
these deviations. According to Newton’s the-
ory, a planet moves round the sun in an el-
lipse, which would permanently maintain its
position with respect to the fixed stars, if we
could disregard the motion of the fixed stars,
themselves and the action of the other planets
under consideration. Thus, if we correct the
observed motion of the planets for these two
influences, and if Newton’s theory be strictly
correct, we ought to obtain for the orbit of the
planet an ellipse, which is fixed with reference
to the fixed stars. This deduction, which can
be tested with great accuracy, has been con-
firmed for all the planets save one, with the
precision that is capable of being obtained by
the delicacy of observation attainable at the
present time. The sole exception is Mercury,
the planet which lies nearest the sun. Since
the time Leverrier, it has been known that
the ellipse corresponding to the orbit of Mer-
cury, after it has been corrected for the influ-
ences mentioned above, is not stationary with
respect to the fixed stars, but that it rotates
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exceedingly slowly in the plane of the orbit
and in the sense of the orbital motion. The
value obtained for this rotary movement of
the orbital ellipse was 43 seconds of arc per
century, an amount ensured to be correct to
within a few seconds of arc. This effect can
be explained by means of classical mechanics
only on the assumption of hypotheses which
have little probability, and which were de-
vised solely for this purpose.

On the basis of the general theory of rel-
ativity, it is found that the ellipse of every
planet round the sun must necessarily rotate
in the manner indicated above; that for all the
planets, with the exception of Mercury, this
rotation is too small to be detected with the
delicacy of observation possible at the present
time; but that in the case of Mercury it must
amount to 43 seconds of arc per century, a re-
sult which is strictly in agreement with obser-
vation.

Apart from this one, it has hitherto been
possible to make only two deductions from the
theory which admit of being tested by obser-
vation, to wit, the curvature of light rays by
the gravitational field of the sun,25 and a dis-
placement of the spectral lines of light reach-
ing us from large stars, as compared with
the corresponding lines for light produced in
an analogous manner terrestrially (i.e. by the
same kind of molecule). I do not doubt that
these deductions from the theory will be con-

25Observed by Eddington and others in 1919. (Cf. Ap-
pendix III.)
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firmed also.



Part III:
Considerations on
the Universe as a

Whole
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XXX. Cosmological
Difficulties of
Newton’s Theory

Apart from the difficulty discussed in Sec-
tion XXI, there is a second fundamental diffi-
culty attending classical celestial mechanics,
which, to the best of my knowledge, was first
discussed in detail by the astronomer Seeliger.
If we ponder over the question as to how the
universe, considered as a whole, is to be re-
garded, the first answer that suggests itself to
us is surely this: As regards space (and time)
the universe is infinite. There are stars ev-
erywhere, so that the density of matter, al-
though very variable in detail, is nevertheless
on the average everywhere the same. In other
words: However far we might travel through
space, we should find everywhere an attenu-
ated swarm of fixed stars of approximately the
same kind and density.

This view is not in harmony with the the-
ory of Newton. The latter theory rather re-
quires that the universe should have a kind
of centre in which the density of the stars is
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a maximum, and that as we proceed outwards
from this centre the group-density of the stars
should diminish, until finally, at great dis-
tances, it is succeeded by an infinite region of
emptiness. The stellar universe ought to be a
finite island in the infinite ocean of space.26

This conception is in itself not very satis-
factory. It is still less satisfactory because it
leads to the result that the light emitted by
the stars and also individual stars of the stel-
lar system are perpetually passing out into in-
finite space, never to return, and without ever
again coming into interaction with other ob-
jects of nature. Such a finite material uni-
verse would be destined to become gradually
but systematically impoverished.

In order to escape this dilemma, Seeliger
suggested a modification of Newton’s law, in
which he assumes that for great distances the
force of attraction between two masses dimin-
ishes more rapidly than would result from the
inverse square law. In this way it is possi-
ble for the mean density of matter to be con-

26Proof.—According to the theory of Newton, the
number of “lines of force” which come from infinity
and terminate in a mass m is proportional to the mass
m. If, on the average, the mass-density P0 is constant
throughout the universe, then a sphere of volume V
will enclose the average mass P0V . Thus the number
of lines of force passing through the surface F of the
sphere into its interior is proportional to P0V . For unit
area of the surface of the sphere the number of lines
of force which enters the sphere is thus proportional to
P0 · V/F or P0R. Hence the intensity of the field at the
surface would ultimately become infinite with increas-
ing radius R of the sphere, which is impossible.
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stant everywhere, even to infinity, without in-
finitely large gravitational fields being pro-
duced. We thus free ourselves from the dis-
tasteful conception that the material universe
ought to possess something of the nature of
centre. Of course we purchase our emanci-
pation from the fundamental difficulties men-
tioned, at the cost of a modification and com-
plication of Newton’s law which has neither
empirical nor theoretical foundation. We can
imagine innumerable laws which would serve
the same purpose, without our being able to
state a reason why one of them is to be pre-
ferred to the others; for any one of these laws
would be founded just as little on more gen-
eral theoretical principles as is the law of
Newton.
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XXXI. The
Possibility of a
“Finite” and Yet
“Unbounded”
Universe

But speculations on the structure of the uni-
verse also move in quite another direction.
The development of non-Euclidean geome-
try led to the recognition of the fact, that
we can cast doubt on the infiniteness of our
space without coming into conflict with the
laws of thought or with experience (Riemann,
Helmholtz). These questions have already
been treated in detail and with unsurpassable
lucidity by Helmholtz and Poincaré, whereas
I can only touch on them briefly here.

In the first place, we imagine an existence
in two-dimensional space. Flat beings with
flat implements, and in particular flat rigid
measuring-rods, are free to move in a plane.
For them nothing exists outside of this plane:
that which they observe to happen to them-

145



146 Relativity

selves and to their flat “things” is the all-
inclusive reality of their plane. In particu-
lar, the constructions of plane Euclidean ge-
ometry can be carried out by means of the
rods, e.g. the lattice construction, considered
in Section XXIV. In contrast to ours, the uni-
verse of these beings is two-dimensional; but,
like ours, it extends to infinity. In their uni-
verse there is room for an infinite number of
identical squares made up of rods, i.e. its vol-
ume (surface) is infinite. If these beings say
their universe is “plane,” there is sense in the
statement, because they mean that they can
perform the constructions of plane Euclidean
geometry with their rods. In this connection
the individual rods always represent the same
distance, independently of their position.

Let us consider now a second two-
dimensional existence, but this time on a
spherical surface instead of on a plane. The
flat beings with their measuring-rods and
other objects fit exactly on this surface and
they are unable to leave it. Their whole uni-
verse of observation extends exclusively over
the surface of the sphere. Are these beings
able to regard the geometry of their universe
as being plane geometry and their rods withal
as the realisation of “distance”? They can-
not do this. For if they attempt to realise a
straight line, they will obtain a curve, which
we “three-dimensional beings” designate as a
great circle, i.e. a self-contained line of defi-
nite finite length, which can be measured up
by means of a measuring-rod. Similarly, this
universe has a finite area, that can be com-
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pared with the area of a square constructed
with rods. The great charm resulting from
this consideration lies in the recognition of the
fact that the universe of these beings is finite
and yet has no limits.

But the spherical-surface beings do not
need to go on a world-tour in order to perceive
that they are not living in a Euclidean uni-
verse. They can convince themselves of this
on every part of their “world,” provided they
do not use too small a piece of it. Starting from
a point, they draw “straight lines” (arcs of cir-
cles as judged in three-dimensional space) of
equal length in all directions. They will call
the line joining the free ends of these lines a
“circle.” For a plane surface, the ratio of the
circumference of a circle to its diameter, both
lengths being measured with the same rod, is,
according to Euclidean geometry of the plane,
equal to a constant value π, which is indepen-
dent of the diameter of the circle. On their
spherical surface our flat beings would find for
this ratio the value

π
sin( r

R
)

( r
R
)

,

i.e. a smaller value than π, the difference be-
ing the more considerable, the greater is the
radius of the circle in comparison with the ra-
dius R of the “world-sphere.” By means of
this relation the spherical beings can deter-
mine the radius of their universe (“world”),
even when only a relatively small part of their
world-sphere is available for their measure-
ments. But if this part is very small indeed,
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they will no longer be able to demonstrate
that they are on a spherical “world” and not on
a Euclidean plane, for a small part of a spher-
ical surface differs only slightly from a piece
of a plane of the same size.

Thus if the spherical-surface beings are
living on a planet of which the solar system
occupies only a negligibly small part of the
spherical universe, they have no means of de-
termining whether they are living in a finite
or in an infinite universe, because the “piece
of universe” to which they have access is in
both cases practically plane, or Euclidean. It
follows directly from this discussion, that for
our sphere-beings the circumference of a circle
first increases with the radius until the “cir-
cumference of the universe” is reached, and
that it thenceforward gradually decreases to
zero for still further increasing values of the
radius. During this process the area of the cir-
cle continues to increase more and more, until
finally it becomes equal to the total area of the
whole “world-sphere.”

Perhaps the reader will wonder why we
have placed our “beings” on a sphere rather
than on another closed surface. But this
choice has its justification in the fact that, of
all closed surfaces, the sphere is unique in
possessing the property that all points on it
are equivalent. I admit that the ratio of the
circumference C of a circle to its radius r de-
pends on r, but for a given value of r it is the
same for all points of the “world-sphere”; in
other words, the “world-sphere” is a “surface
of constant curvature.”
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To this two-dimensional sphere-universe
there is a three-dimensional analogy, namely,
the three-dimensional spherical space which
was discovered by Riemann. Its points are
likewise all equivalent. It possesses a finite
volume, which is determined by its “radius”
(2π2R3). Is it possible to imagine a spheri-
cal space? To imagine a space means nothing
else than that we imagine an epitome of our
“space” experience, i.e. of experience that we
can have in the movement of “rigid” bodies. In
this sense we can imagine a spherical space.

Suppose we draw lines or stretch strings in
all directions from a point, and mark off from
each of these the distance r with a measuring-
rod. All the free end-points of these lengths lie
on a spherical surface. We can specially mea-
sure up the area (F = 4πr2) of this surface by
means of a square made up of measuring-rods.
If the universe is Euclidean, then F = 4πr2;
if it is spherical, then F is always less than
4πr2. With increasing values of r, F increases
from zero up to a maximum value which is
determined by the “world-radius,” but for still
further increasing values of r, the area grad-
ually diminishes to zero. At first, the straight
lines which radiate from the starting point di-
verge farther and farther from one another,
but later they approach each other, and fi-
nally they run together again at a “counter-
point” to the starting point. Under such con-
ditions they have traversed the whole spher-
ical space. It is easily seen that the three-
dimensional spherical space is quite analo-
gous to the two-dimensional spherical surface.
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It is finite (i.e. of finite volume), and has no
bounds.

It may be mentioned that there is yet an-
other kind of curved space: “elliptical space.”
It can be regarded as a curved space in which
the two “counter-points” are identical (indis-
tinguishable from each other). An elliptical
universe can thus be considered to some ex-
tent as a curved universe possessing central
symmetry.

It follows from what has been said, that
closed spaces without limits are conceivable.
From amongst these, the spherical space (and
the elliptical) excels in its simplicity, since all
points on it are equivalent. As a result of this
discussion, a most interesting question arises
for astronomers and physicists, and that is
whether the universe in which we live is in-
finite, or whether it is finite in the manner of
the spherical universe. Our experience is far
from being sufficient to enable us to answer
this question. But the general theory of rela-
tivity permits of our answering it with a mod-
erate degree of certainty, and in this connec-
tion the difficulty mentioned in Section XXX
finds its solution.



XXXII. The
Structure of Space
According to the
General Theory of
Relativity

According to the general theory of relativity,
the geometrical properties of space are not in-
dependent, but they are determined by mat-
ter. Thus we can draw conclusions about the
geometrical structure of the universe only if
we base our considerations on the state of the
matter as being something that is known. We
know from experience that, for a suitably cho-
sen co-ordinate system, the velocities of the
stars are small as compared with the veloc-
ity of transmission of light. We can thus as a
rough approximation arrive at a conclusion as
to the nature of the universe as a whole, if we
treat the matter as being at rest.

We already know from our previous discus-
sion that the behaviour of measuring-rods and
clocks is influenced by gravitational fields, i.e.
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by the distribution of matter. This in itself
is sufficient to exclude the possibility of the
exact validity of Euclidean geometry in our
universe. But it is conceivable that our uni-
verse differs only slightly from a Euclidean
one, and this notion seems all the more prob-
able, since calculations show that the metrics
of surrounding space is influenced only to an
exceedingly small extent by masses even of
the magnitude of our sun. We might imag-
ine that, as regards geometry, our universe
behaves analogously to a surface which is ir-
regularly curved in its individual parts, but
which nowhere departs appreciably from a
plane: something like the rippled surface of
a lake. Such a universe might fittingly be
called a quasi-Euclidean universe. As regards
its space it would be infinite. But calcula-
tion shows that in a quasi-Euclidean universe
the average density of matter would neces-
sarily be nil. Thus such a universe could
not be inhabited by matter everywhere; it
would present to us that unsatisfactory pic-
ture which we portrayed in Section XXX.

If we are to have in the universe an aver-
age density of matter which differs from zero,
however small may be that difference, then
the universe cannot be quasi-Euclidean. On
the contrary, the results of calculation indi-
cate that if matter be distributed uniformly,
the universe would necessarily be spherical
(or elliptical). Since in reality the detailed
distribution of matter is not uniform, the real
universe will deviate in individual parts from
the spherical, i.e. the universe will be quasi-
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spherical. But it will be necessarily finite.
In fact, the theory supplies us with a simple
connection27 between the space-expanse of the
universe and the average density of matter in
it.

27For the “radius” R of the universe we obtain the
equation

R2 =
2
κρ

The use of the C.G.S. system in this equation gives is
the average density of the matter.
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I. Simple
Derivation of the
Lorentz
Transformation

For the relative orientation of the co-ordinate
systems indicated in Fig. 2, the x-axes of both
systems permanently coincide. In the present
case we can divide the problem into parts
by considering first only events which are lo-
calised on the x-axis. Any such event is repre-
sented with respect to the co-ordinate system
K by the abscissa x and the time t, and with
respect to the system K ′ by the abscissa x′ and
the time t′, when x and t are given.

A light-signal, which is proceeding along
the positive axis of x, is transmitted accord-
ing to the equation

x = ct

or

x− ct = 0. (3)
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Since the same light-signal has to be trans-
mitted relative to K ′ with the velocity c, the
propagation relative to the system K ′ will be
represented by the analogous formula

x′ − ct′ = 0. (4)

Those space-time points (events) which sat-
isfy (3) must also satisfy (4). Obviously this
will be the case when the relation

(x′ − ct′) = λ · (x− ct) (5)

is fulfilled in general, where λ indicates a
constant; for, according to (5), the disappear-
ance of (x − ct) involves the disappearance of
(x′ − ct′).

If we apply quite similar considerations to
light rays which are being transmitted along
the negative x-axis, we obtain the condition

(x′ + ct′) = µ · (x + ct). (6)

By adding (or subtracting) equations (5)
and (6), and introducing for convenience the
constants a and b in place of the constants λ
and µ where

a =
λ + µ

2
and

b =
λ− µ

2

we obtain the equations

x′ = ax− bct (7)
ct′ = act− bx. (8)
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We should thus have the solution of our
problem, if the constants a and b were known.
These result from the following discussion.

For the origin of K ′ we have permanently
x′ = 0, and hence according to the first of the
equations (7) and (8)

x =
bc

a
t.

If we call v the velocity with which the ori-
gin of K ′ is moving relative to K, we then have

v =
bc

a
. (9)

The same value v can be obtained from
equations (7) and (8), if we calculate the veloc-
ity of another point of K ′ relative to K, or the
velocity (directed towards the negative x-axis)
of a point of K with respect to K ′. In short, we
can designate v as the relative velocity of the
two systems.

Furthermore, the principle of relativity
teaches us that, as judged from K, the length
of a unit measuring-rod which is at rest with
reference to K ′ must be exactly the same
as the length, as judged from K ′, of a unit
measuring-rod which is at rest relative to K.
In order to see how the points of the x′-axis
appear as viewed from K, we only require to
take a “snapshot” of K ′ from K; this means
that we have to insert a particular value of t
(time of K), e.g. t = 0. For this value of t we
then obtain from the equation (7)

x′ = ax.
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Two points of the x′-axis which are sepa-
rated by the distance x′ = 1 when measured
in the K ′ system are thus separated in our in-
stantaneous photograph by the distance

∆x =
1

a
. (10)

But if the snapshot be taken from K ′ (t′ =
0), and if we eliminate t from the equations
(7) and (8), taking into account the expression
(9), we obtain

x′ = a · (1− v2

c2
) · x.

From this we conclude that two points on
the x-axis and separated by the distance 1
(relative to K) will be represented on our
snapshot by the distance

∆x′ = a · (1− v2

c2
). (11)

But from what has been said, the two
snapshots must be identical; hence ∆x in (10)
must be equal to ∆x′ in (11), so that we obtain

a2 =
1

1− v2

c2

. (12)

The equations (9) and (12) determine the
constants a and b. By inserting the values of
these constants in (7) and (8), we obtain the
first and the fourth of the equations given in
Section XI.

x′ =
x− vt√
1− v2

c2

(13)

t′ =
t− v

c2
x√

1− v2

c2

. (14)
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Thus we have obtained the Lorentz trans-
formation for events on the x-axis. It satisfies
the condition

x′2 − c2t′2 = x2 − c2t2 (15)

The extension of this result, to include
events which take place outside the x-axis, is
obtained by retaining equations (13) and (14)
and supplementing them by the relations

y′ = y
z′ = z.

}
(16)

In this way we satisfy the postulate of the con-
stancy of the velocity of light in vacuo for rays
of light of arbitrary direction, both for the sys-
tem K and for the system K ′. This may be
shown in the following manner.

We suppose a light-signal sent out from the
origin of K at the time t = 0. It will be propa-
gated according to the equation

r =
√

x2 + y2 + z2 = ct,

or, if we square this equation, according to the
equation

x2 + y2 + z2 − c2t2 = 0. (17)

It is required by the law of propagation of
light, in conjunction with the postulate of rel-
ativity, that the transmission of the signal in
question should take place—as judged from
K ′—in accordance with the corresponding for-
mula

r′ = ct′
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or,

x′2 + y′2 + z′2 − c2t′2 = 0. (18)

In order that equation (18) may be a conse-
quence of equation (17), we must have

x′2+y′2+z′2−c2t′2 = σ ·(x2+y2+z2−c2t2). (19)

Since equation (15) must hold for points on
the x-axis, we thus have σ = 1; for (19) is a
consequence of (15) and (16), and hence also
of (13) and (16). We have thus derived the
Lorentz transformation.

The Lorentz transformation represented
by (13) and (16) still requires to be gener-
alised. Obviously it is immaterial whether
the axes of K ′ be chosen so that they are spa-
tially parallel to those of K. It is also not es-
sential that the velocity of translation of K ′

with respect to K should be in the direction
of the x-axis. A simple consideration shows
that we are able to construct the Lorentz
transformation in this general sense from two
kinds of transformations, viz. from Lorentz
transformations in the special sense and from
purely spatial transformations, which corre-
sponds to the replacement of the rectangular
co-ordinate system by a new system with its
axes pointing in other directions.

Mathematically, we can characterise the
generalised Lorentz transformation thus: It
expresses x′, y′, z′, t′, in terms of linear homo-
geneous functions of x, y, z, t, of such a kind
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that the relation

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2 (20)

is satisfied identically. That is to say: If
we substitute their expressions in x, y, z, t,
in place of x′, y′, z′, t′, on the left-hand side,
then the left-hand side of (20) agrees with the
right-hand side.
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II. Minkowski’s
Four-Dimensional
Space (“World”)

We can characterise the Lorentz transfor-
mation still more simply if we introduce
the imaginary

√
−1ct in place of t, as time-

variable. If, in accordance with this, we insert

x1 = x

x2 = y

x3 = z

x4 =
√
−1ct

and similarly for the accented system K ′, then
the condition which is identically satisfied by
the transformation can be expressed thus:

x′2
1 + x′2

2 + x′2
3 + x′2

4 = x2
1 + x2

2 + x2
3 + x2

4. (21)

That is, by the afore-mentioned choice of
“co-ordinates” (20) is transformed into this
equation.

We see from (21) that the imaginary time
co-ordinate x4 enters into the condition of
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transformation in exactly the same way as the
space co-ordinates x1, x2, x3. It is due to this
fact that, according to the theory of relativity,
the “time” x4 enters into natural laws in the
same form as the space co-ordinates x1, x2, x3.

A four-dimensional continuum described
by the “co-ordinates” x1, x2, x3, x4, was called
“world” by Minkowski, who also termed a
point-event a “world-point.” From a “happen-
ing” in three-dimensional space, physics be-
comes, as it were, an “existence” in the four-
dimensional “world.”

This four-dimensional “world” bears a
close similarity to the three-dimensional
“space” of (Euclidean) analytical geometry. If
we introduce into the latter a new Cartesian
co-ordinate system (x′

1, x
′
2, x

′
3) with the same

origin, then x′
1, x

′
2, x

′
3, are linear homogeneous

functions of x1, x2, x3, which identically satisfy
the equation

x′2
1 + x′2

2 + x′2
3 = x2

1 + x2
2 + x2

3.

The analogy with (21) is a complete one.
We can regard Minkowski’s “world” in a for-
mal manner as a four-dimensional Euclidean
space (with imaginary time co-ordinate); the
Lorentz transformation corresponds to a “ro-
tation” of the co-ordinate system in the four-
dimensional “world.”



III. The
Experimental
Confirmation of
the General Theory
of Relativity

From a systematic theoretical point of view,
we may imagine the process of evolution of
an empirical science to be a continuous pro-
cess of induction. Theories are evolved, and
are expressed in short compass as statements
of a large number of individual observations
in the form of empirical laws, from which the
general laws can be ascertained by compari-
son. Regarded in this way, the development of
a science bears some resemblance to the com-
pilation of a classified catalogue. It is, as it
were, a purely empirical enterprise.

But this point of view by no means em-
braces the whole of the actual process; for it
slurs over the important part played by in-
tuition and deductive thought in the develop-
ment of an exact science. As soon as a science
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has emerged from its initial stages, theoret-
ical advances are no longer achieved merely
by a process of arrangement. Guided by em-
pirical data, the investigator rather develops
a system of thought which, in general, is built
up logically from a small number of funda-
mental assumptions, the so-called axioms. We
call such a system of thought a theory. The
theory finds the justification for its existence
in the fact that it correlates a large number
of single observations, and it is just here that
the “truth” of the theory lies.

Corresponding to the same complex of em-
pirical data, there may be several theories,
which differ from one another to a consider-
able extent. But as regards the deductions
from the theories which are capable of being
tested, the agreement between the theories
may be so complete, that it becomes difficult
to find such deductions in which the two the-
ories differ from each other. As an example,
a case of general interest is available in the
province of biology, in the Darwinian theory
of the development of species by selection in
the struggle for existence, and in the theory of
development which is based on the hypothe-
sis of the hereditary transmission of acquired
characters.

We have another instance of far-reaching
agreement between the deductions from two
theories in Newtonian mechanics on the one
hand, and the general theory of relativity on
the other. This agreement goes so far, that up
to the present we have been able to find only
a few deductions from the general theory of
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relativity which are capable of investigation,
and to which the physics of pre-relativity days
does not also lead, and this despite the pro-
found difference in the fundamental assump-
tions of the two theories. In what follows, we
shall again consider these important deduc-
tions, and we shall also discuss the empiri-
cal evidence appertaining to them which has
hitherto been obtained.

(a) MOTION OF THE
PERIHELION OF
MERCURY
According to Newtonian mechanics and New-
ton’s law of gravitation, a planet which is re-
volving round the sun would describe an el-
lipse round the latter, or, more correctly, round
the common centre of gravity of the sun and
the planet. In such a system, the sun, or the
common centre of gravity, lies in one of the
foci of the orbital ellipse in such a manner
that, in the course of a planet-year, the dis-
tance sun-planet grows from a minimum to a
maximum, and then decreases again to a min-
imum. If instead of Newton’s law we insert
a somewhat different law of attraction into
the calculation, we find that, according to this
new law, the motion would still take place in
such a manner that the distance sun-planet
exhibits periodic variations; but in this case
the angle described by the line joining sun and
planet during such a period (from perihelion—
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closest proximity to the sun—to perihelion)
would differ from 360◦. The line of the or-
bit would not then be a closed one, but in the
course of time it would fill up an annular part
of the orbital plane, viz. between the circle of
least and the circle of greatest distance of the
planet from the sun.

According also to the general theory of rel-
ativity, which differs of course from the the-
ory of Newton, a small variation from the
Newton-Kepler motion of a planet in its orbit
should take place, and in such a way, that the
angle described by the radius sun-planet be-
tween one perihelion and the next should ex-
ceed that corresponding to one complete revo-
lution by an amount given by

+
24π3a2

T 2c2(1− e2)
.

(N.B.—One complete revolution corre-
sponds to the angle 2π in the absolute angu-
lar measure customary in physics, and the
above expression gives the amount by which
the radius sun-planet exceeds this angle dur-
ing the interval between one perihelion and
the next.) In this expression a represents the
major semi-axis of the ellipse, e its eccentric-
ity, c the velocity of light, and T the period of
revolution of the planet. Our result may also
be stated as follows: According to the general
theory of relativity, the major axis of the el-
lipse rotates round the sun in the same sense
as the orbital motion of the planet. Theory
requires that this rotation should amount to
43 seconds of arc per century for the planet
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Mercury, but for the other planets of our solar
system its magnitude should be so small that
it would necessarily escape detection.28

In point of fact, astronomers have found
that the theory of Newton does not suffice
to calculate the observed motion of Mercury
with an exactness corresponding to that of
the delicacy of observation attainable at the
present time. After taking account of all
the disturbing influences exerted on Mer-
cury by the remaining planets, it was found
(Leverrier—1859—and Newcomb—1895) that
an unexplained perihelial movement of the or-
bit of Mercury remained over, the amount of
which does not differ sensibly from the above-
mentioned +43 seconds of arc per century. The
uncertainty of the empirical result amounts to
a few seconds only.

(b) DEFLECTION OF
LIGHT BY A
GRAVITATIONAL FIELD
In Section XXII it has been already mentioned
that, according to the general theory of rela-
tivity, a ray of light will experience a curva-
ture of its path when passing through a grav-
itational field, this curvature being similar to
that experienced by the path of a body which
is projected through a gravitational field. As

28Especially since the next planet Venus has an or-
bit that is almost an exact circle, which makes it more
difficult to locate the perihelion with precision.
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a result of this theory, we should expect that
a ray of light which is passing close to a heav-
enly body would be deviated towards the lat-
ter. For a ray of light which passes the sun at
a distance of ∆ sun-radii from its centre, the
angle of deflection (α) should amount to

α =
1.7 seconds of arc

∆
.

It may be added that, according to the the-
ory, half of this deflection is produced by the
Newtonian field of attraction of the sun, and
the other half by the geometrical modification
(“curvature”) of space caused by the sun.
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FIG. 5.

This result admits of an experimental test
by means of the photographic registration of
stars during a total eclipse of the sun. The
only reason why we must wait for a total
eclipse is because at every other time the at-
mosphere is so strongly illuminated by the
light from the sun that the stars situated near
the sun’s disc are invisible. The predicted ef-
fect can be seen clearly from the accompany-
ing diagram. If the sun (S) were not present,
a star which is practically infinitely distant
would be seen in the direction D1, as observed
from the earth. But as a consequence of the
deflection of light from the star by the sun, the
star will be seen in the direction D2, i.e. at a
somewhat greater distance from the centre of
the sun than corresponds to its real position.

In practice, the question is tested in the fol-
lowing way. The stars in the neighbourhood
of the sun are photographed during a solar
eclipse.

In addition, a second photograph of the
same stars is taken when the sun is situ-
ated at another position in the sky, i.e. a few
months earlier or later. As compared with
the standard photograph, the positions of the
stars on the eclipse-photograph ought to ap-
pear displaced radially outwards (away from
the centre of the sun) by an amount corre-
sponding to the angle α.

We are indebted to the Royal Society and
to Royal Astronomical Society for the inves-
tigation of this important deduction. Un-
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daunted by the war and by difficulties of both
a material and a psychological nature aroused
by the war, these societies equipped two
expeditions—to Sobral (Brazil) and to the is-
land of Principe (West Africa)—and sent sev-
eral of Britain’s most celebrated astronomers
(Eddington, Cottingham, Crommelin, David-
son), in order to obtain photographs of the so-
lar eclipse of 29th May, 1919. The relative de-
screpancies to be expected between the stel-
lar photographs obtained during the eclipse
and the comparison photographs amounted to
a few hundredths of a millimetre only. Thus
great accuracy was necessary in making the
adjustments required for the taking of the
photographs, and in their subsequent mea-
surement.

The results of the measurements con-
firmed the theory in a thoroughly satisfactory
manner. The rectangular components of the
observed and of the calculated deviations of
the stars (in seconds of arc) are set forth in
the following table of results:29

1st Co-ordinate 2nd Co-ordinate
Star Obs. Calc. Obs. Calc.
#11 -0.19 -0.22 +0.16 +0.02
#5 +0.29 +0.31 -0.46 -0.43
#4 +0.11 0.10 +0.83 +0.74
#3 +0.20 +0.12 +1.00 +0.87
#6 +0.10 +0.04 +0.57 +0.40
#10 -0.08 +0.09 +0.35 +0.32
#2 +0.95 +0.85 -0.27 -0.09

29For editorial reasons, the format of the table has
been slightly modified—Ron Burkey.
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(c) DISPLACEMENT OF
SPECTRAL LINES
TOWARDS THE RED
In Section XXIII it has been shown that in a
system K ′ which is in rotation with regard
to a Galileian system K, clocks of identical
construction and which are considered at rest
with respect to the rotating reference-body, go
at rates which are dependent on the positions
of the clocks. We shall now examine this de-
pendence quantitatively. A clock, which is
situated at a distance r from the centre of
the disc, has a velocity relative to K which is
given by

v = ωr,

where ω represents the velocity of rotation of
the disc K ′ with respect to K. If v0 represents
the number of ticks of the clock per unit time
(“rate” of the clock) relative to K when the
clock is at rest, then the “rate” of the clock (v)
when it is moving relative to K with a velocity
v, but at rest with respect to the disc, will, in
accordance with Section XII, be given by

v = v0

√
1− v2

c2

or with sufficient accuracy by

v = v0(1−
1

2

v2

c2
).

This expression may also be stated in the fol-
lowing form:
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v = v0(1−
1

c2

ω2r2

2
).

If we represent the difference of potential
of the centrifugal force between the position
of the clock and the centre of the disc by φ, i.e.
the work, considered negatively, which must
be performed on the unit of mass against the
centrifugal force in order to transport it from
the position of the clock on the rotating disc to
the centre of the disc, then we have

φ = −ω2r2

2
.

From this it follows that

v = v0(1 +
φ

c2
).

In the first place, we see from this expression
that two clocks of identical construction will
go at different rates when situated at differ-
ent distances from the centre of the disc. This
result is also valid from the standpoint of an
observer who is rotating with the disc.

Now, as judged from the disc, the latter is
in a gravitational field of potential φ, hence
the result we have obtained will hold quite
generally for gravitational fields. Further-
more, we can regard an atom which is emit-
ting spectral lines as a clock, so that the fol-
lowing statement will hold:

An atom absorbs or emits light of
a frequency which is dependent on
the potential of the gravitational
field in which it is situated.
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The frequency of an atom situated on the sur-
face of a heavenly body will be somewhat less
than the frequency of an atom of the same el-
ement which is situated in free space (or on
the surface of a smaller celestial body). Now
φ = −K ·M/r where K is Newton’s constant of
gravitation, and M is the mass of the heavenly
body. Thus a displacement towards the red
ought to take place for spectral lines produced
at the surface of stars as compared with the
spectral lines of the same element produced
at the surface of the earth, the amount of this
displacement being

v0 − v

v0

=
K

c2

M

r
.

For the sun, the displacement towards the
red predicted by theory amounts to about two
millionths of the wave-length. A trustworthy
calculation is not possible in the case of the
stars, because in general neither the mass M
nor the radius r is known.

It is an open question whether or not this
effect exists, and at the present time as-
tronomers are working with great zeal to-
wards the solution. Owing to the smallness
of the effect in the case of the sun, it is dif-
ficult to form an opinion as to its existence.
Whereas Grebe and Bachem (Bonn), as a re-
sult of their own measurements and those of
Evershed and Schwarzschild on the cyanogen
bands, have placed the existence of the effect
almost beyond doubt, other investigators, par-
ticularly St. John, have been led to the oppo-
site opinion in consequence of their measure-
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ments.
Mean displacements of lines towards the

less refrangible end of the spectrum are cer-
tainly revealed by statistical investigations
of the fixed stars; but up to the present the
examination of the available data does not
allow of any definite decision being arrived
at, as to whether or not these displacements
are to be referred in reality to the effect of
gravitation. The results of observation have
been collected together, and discussed in de-
tail from the standpoint of the question which
has been engaging our attention here, in a pa-
per by E. Freundlich entitled “Zur Prüfungder
allgemeinen Relativitäts-Theorie” (Die Natur-
wissenschaften, 1919, No. 35, p. 520: Julius
Springer, Berlin).

At all events, a definite decision will be
reached during the next few years. If the dis-
placement of spectral lines towards the red
by the gravitational potential does not exist,
then the general theory of relativity will be
untenable. On the other hand, if the cause of
the displacement of spectral lines be definitely
traced to the gravitational potential, then the
study of this displacement will furnish us with
important information as to the mass of the
heavenly bodies.
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