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We show that the multiple-photon excitation (MPE) of multiplet systems can be described more accurately using the 
adiabatic than the sudden approximation for many experimentally important cases. 

Among the numerous aspects of the multiple-photon 
excitation (MPE) of polyatomic molecules by infrared 
laser light [l] that have resisted explanation up to the 
present time, few have been more difficult to explain 
quantitatively using the current theories [ 1 (a), 21 than 
the multiple-photon dissociation (MPD) of SF, and 
other molecules at very low intensities, the most strik- 
ing example of which is the MPD observed [3] in the 
beam of a continuous-wave CO2 laser. Theories of MPE 
using an effective-states basis and the sudden approx- 
imation [2,4] tend to describe MPE as the result of 
multiphoton resonances [2,5], which are too narrow at 
low field strengths to provide a plausible explanation 
of the excitation of SF, even to three quanta of excita- 
tion (~3 = 3), much less to dissociation. Further, an iso- 
lated multiphoton resonance can result at most in a 
time-averaged excitation probability of l/2 in the up- 
per state [2]. While we make no pretense of solving the 
problem of MPE at low intensities, we show in this com- 
munication that excitation of a multilevel system with 
successive dense “bands” of levels (fig. 1) using a slowly 
(adiabatically) increasing optical field can lead to nearly 
complete inversion of the population from the ground 
state to a sublevel of the highest band. Further, numer- 
ical estimates for a system of interest (a subset of the 
u3 = 0 and u3 = 1 levels of SF,) indicate that in fact it 
is the adiabatic approximation, not the sudden approx- 
imation, that is the more nearly satisfied in many cases 
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of interest in experimental studies of MPE in real mole- 
cules. .Our findings complement and extend those of 
Kuz’min and Sazonov [6], who have studied adiabatic 
inversion in a very highly idealized system consisting 
of a ladder of nondegenerate states. 

Since the appropriateness of the adiabatic as op- 
posed to the sudden approximation is a central point in 
this work, we begin with a brief discussion of the crite- 
rion for validity of the adiabatic approximation in the 
context of MPE. We then show analytically and numer- 
ically that adiabatic inversion is to be expected in many 
cases when a (1, N) system is excited by a laser frequen- 
cy that lies within the band of upper levels, and present 
numerical results that illustrate the adiabatic inversion 
of a (1, N, N’) system. We conclude with a few remarks 
on the circumstances under which an adiabatic inver- 
sion, which for an isolated molecule exists only while 

EXCITATION OF A (I,N,N’) 
SYSTEM 

Fig. 1. Excitation of a (1, N, N’) system. 
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the laser field is turned on, may be converted into real 
excitation persisting after the pulse has been turned off. 

To analyze the validity of the adiabatic approxima- 
tion, consider the rotating-wave Schrodinger equation 
for a multilevel system driven by a quasimonochromatic 
laser field E(t) = E, (t) cos wr, 

dcldt = iHeffc, (1) 

where c is a column vector each of whose components 
is the Schrbdinger-picture probability amplitude of a 
state 1mA) of the multilevel system, times a time-de- 
pendent phase factor ([7], eq. (3)). The effective hamil- 
tonian Heff, which has been given in [8], eq. (l), is of 
the form 

Heff = A t (2R)-’ EOp, (2) 

where A is a diagonal matrix containing the detunings 
from resonance, AmA = mw - R-l EmA, and p is the 
matrix of dipole transition moments. If the field enve- 
lope Eg is increased sufficiently slowly from its initial 
value of zero (at t = - -) to a finite value, the system 
will remain in that eigenstate 1X,) of Heff that envolves 
continuously from the initial state ImoAo). In the mul- 
tilevel adiabatic-following approximation (MLAFA) 
one assumes that the state vector of the system is IX,) 
for a finite rate of change of the field envelope E,. 
The condition that the probability amplitude of any of 
the other dressed states IAj(Eo)) (i # 0) be small com- 
pared to that of lho (E,)) is ([9], p. 753) 

aoi(Eo) * I’yoi/~oi I @ 1, (3) 

where Woi(Eo) = ho(Eo) - I; I is the eigen- 
value of Heff corresponding to the dressed state 
I Ai(E and 

Qoi(Eo) = (ho(Eo)IdHeff/dt I&(Eo))/~o~(Eo). (4) 

From (2), dHeff/dt = (f&/E,-J (Heff - A) for a laser 
pulse of fixed frequency and time-varying amplitude. 
For the purpose of estimating the validity of the 
MLAFA according to .(3), we take the pulse risetime 
7p as an estimate of (,!$/Eo)-l. The criterion for valid- 
ity of the MLAFA is therefore 

I(A~(E~)IAl~~(E~))l[7p(~~i(E~))21-1 g 1. (54 
(Note that the detuning matrix A is not diagonal in the 
dressed-states basis.) For a two-level system, explicit 
evaluation of eqs. (3)-(4) leads to the condition lSU1 
< 1 WoiT3 for validity of the MLAFA (where a = poiE,/ 
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2h); the latter condition has been derived previously by 
Crance using a different method [lo]. Although (5) is 
in a convenient form for numerical evaluation for a 
multilevel system, analytical evaluation is difficult in 
general. In the limit of weak fields, for which 1 ~jo 1 
E IE, (miAilplmgAg)l(2R)-’ Q lAmiJ, first-order 
perturbation theory gives (h,lA Ihi) = - ai,, (as long 
as GjO # 0). To order E,, 00 i = - Ami*.. The criteri- 
on for validity of the MLAFA in a weak reld is there- / 
fore 

If+, I [rpA&tJ -’ < 1 (weak field), (5b) 

which is surely satisfied whenever lAmiAi 1~~ > 1 since 
lS$uA,!A. 1 Q 1. Criterion (5b) for a multilevel system 
is consisielfit with, and generalizes, the weak-field 
adiabaticity criterion previously obtained from an ex- 
act solution for a two-level system driven by a semiex- 
ponential pulse [ 111. 

For strong fields the situation is more complex be- 
cause of the possibility of avoided crossings of the 
dressed energy levels for some values of Eo. In the case 
of a system consisting of three levels (IO), 11) and 12)), 
an avoided crossing can occur between the dressed 
states Iho) and lh2) that evolve adiabatically from 10) 
and 12) if the laser frequency is tuned between the one- 
photon and two-photon resonance frequencies. If we 
assume that the intermediate state 11) is only weakly 
populated at the avoided crossing, then the splitting 
~02 = 2QoI Q12/A1 at the crossing; i.e. wo2 is twice 
the so-called “two-photon Rabi frequency” [ 12 1. The 
avoided crossing occurs when A2 = ho = -@l/Al, 
i.e. when the (01) Rabi frequency is the geometric 
mean of the upper-and intermediate-level detunings. 
Further, (A0 1 A 1 X2) - - A,. The criterion for adiabati- 
city in this case is therefore 

lAI/(4&rp) 1 Q 1 (avoided crossing), (54 

where al2 is evaluated at the field strength for which 
the crossing occurs. For example, if pol - p12, then 
(5~) and the relation !E& x - Al A2 (at the crossing) 
imply that the criterion for adiabaticity is A2rp 3 l/4: 
i.e. the critical time scale in this case is established by 
the detuning of the upper level. 

We turn to a discussion of adiabatic inversion of a 
(1, N) system consisting of the lower two sets of levels 
in fig. 1. As is well known, the eigenvalue equation for 
thissystemis [13] h=Z~==l)~j!(A-Ali)-l.The com- 
ponent along llj> of the eigenvector corresponding to 
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h is given by 

bj(h) = fZj(h - A& bu(X). (6) 

For low fields such that 

Wjl g IA,, i+l - A,,l, (7) 

the eigenvalues are h = 0 and h = AIi. For higher fields 
the dressed level 1 X0> correlated with the ground state 
10) is repelled by the manifold of levels 1X1 i). If the 
detuning A, of the ground level (which we take as z 0) 
lies outside the manifold of upper-level detunings A12, 
then the mutual repulsion of lh,> and the manifold of 
lh, i> as EO is increased, together with the fact that all 
but two of the dressed-state energies are trapped be- 
tween successive detunings [ A1 i, Al, jltl], have the 
consequence that at sufficiently high fields the (1, N) 
system closely resembles a two-level system. However, 
if A,(-0) is within the manifold {Alj}, then the repul- 
sion of X0 by most of the upper levels 1 hli) as EO is in- 
creased will lead to an avoided crossing of Iho) with 
some dressed level lhIi), with the consequence that 
h, + Ali as E, +=. It is this avoided crossing that 
leads to adiabatic inversion of a (1, N) system when 
the laser frequency is tuned within the band of upper 
levels. 

To analyze the avoided crossing and to evaluate the 
adiabaticity criterion 5(a), let All = Ali + vi, where we 
expect that lull< 1 Al,ZTl - Al,jl for high fields. 
From (6a) we find that 

qj = /.1;(E~/2h)~ [Alj - (EO/21Q2 Ki] -l, (8) 

where Kj = ~(j+i) $(AIj - Alj)-l. Speaking crudely, 
for fields for which the Rabi frequency is large compar- 
ed to the spacing of upper levels, i.e., 

lf$i@ lAl,ikl -$I, (9) 

Kj will be the dominant term in the denominator of 
(8), since Alj is nearly zero. Thus the crossing occurs 
when IS+ I - lAl,j+l - Al,i 1. The asymptotic value of 
q.isqta)- - $/Kj. The probability amplitude of the 
ukperlstate 1 lj) in this case, is from (6), bi (&-J 
= Wjhj) boo)~ so that the population in llj) is 
large provided that 1 aj 1% 1Qj 1. The inversion is most 
nearly complete for a given E. when 1 lj) is located at 
the edge of the manifold (fig. 2). If we let j =N, Erj =/J 
andA l,i+l -Al,i = 6 (independent of i), and then ap- 
proximate KN = @2/S) In N, we find the asymptotic 

qN = hlN - AlN to be &) = - 6/ln N. The asymptotic 

Fig. 2. Populations in the sublevels 11 j) of a (1,s) system for 
which the upper-level spacing is S/2nc = 0.1 cm-’ ; the transi- 
tion dipole moments are ;I: pf = (4 X lo-l9 st C -cm (esu))2 
q : lO,O) state; 0: II, 1) state. 

upper-state probability amplitude is bN (Au) - - (pEo/ 
(2%)) (In N) b. (X0); the ratio of the Rabi frequency 
to the level spacing and the logarithm of the number 
of upper states are thus the dominant parameters in 
determining the degree of inversion. 

An evaluation of the adiabatic criterion (5a) using 
loo11 -6 and l(XolAlxIZ)l- lAINI/ (which are 
valid for a state at the edge of the manifold { Ali>) 
leads to the criterion 

rp6 2- l/2 (10) 

for adiabatic inversion of the levels 10) and 11 N) by in- 
creasing E,. To see whether this criterion is satisfied in 
MPE experiments, consider the excitation of clusters 
of levels with a given value of R in the u3 = 1 state of 
SF,. The spacing between clusters is 6/27rc 300-500 
MHz; typical pulse lengths rp - 50-100 ns thus easily 
satisfy (lo), and even for the subpulses of length rp - 1 
ns in a typical self-mode locked CO2 TEA laser pulse 
one finds Zirp - 1. The critical field strength at which 
an avoided crossing occurs in u3 = 1 of SF6 is E. 
- 2p16//.~ - 10 sV cm-l, corresponding to an intensity 
I - 1 O4 W crne2, which is quite modest in comparison 
with intensities often used in MPE experiments. By 
contrast, the critical field strength for adiabatic inver- 
sion of a u = 2 level with an intermediate-state detuning 
A1 - 2 cm-l and an upper-state detuning A2/2n -500 
MHz, which exemplifies the situation envisaged in [6], 
is E. - 200 sV cm-l, corresponding to the much 
higher intensity Z - 4 X lo6 W cme2. Thus the phenom- 
enon of adiabatic inversion of (1, N) systems must be 
taken seriously in studies of MPE in real systems. 
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Fig. 3. Dressed-state eigenvalues h of a (1, 3,6) system as func- 
tions of the laser field amplitude Eu, showing avoided crossings. 
Parameters were (see fig. 1) 1ru = 948.000 cm-l; i& = 947.985 
cm-’ ; 6, = 0.01 cm-r; 5, = 0.0033 cm-‘; X$ = (4 X lo-l9 
esu)2; and w/2nc = 947.98 cm-‘. 

Similar phenomena of adiabatic inversion occur in 
(1, N, N’) systems, as is illustrated for a (1,3,6) sys- 
tem in figs. 3 and 4. In fact, one expects adiabatic in- 
version to be a general phenomenon for multilevel 
“band” systems, and to occur at field strengths of the 
order of magnitude indicated by (7) whenever the laser 
frequency w is such that nhw lies within the nth band. 
In SF, early calculations suggested [14] and recent 
work has confirmed [15] that a sequence of such reso- 
nantly connected “bands” exists up to high levels of 
excitation (u3 - 10). Similar patterns of nearly reso- 
nant excitation have been found or conjectured in other 
molecules [ 11. Further, the vibrational quasi-continuum 
that has been invoked to explain many features of 
MPE is usually assumed [S] to afford a resonant transi- 

Fig. 4. Populations of the sublevels of a (1, 3,6) system as 
functions of the field amplitude Eo, illustrating the excitation 
fist of u = 2 and subsequently u = 1. 0: ground state; Y: 
12,6) state; o: 11, 1) state; +: 11,3) state. 

tion at any laser frequency near the u = 0 + u = 1 transi- 
tion frequency; the (1, N, N’, . . . ) system is a model of 
such a system. Therefore one expects adiabatic inver- 
sion to be a commonplace phenomenon in multilevel 
systems and for laser pulses that satisfy (10). As is il- 
lustrated in fig. 4, avoided crossings can lead to partial 
de-excitation (as well as to excitation) to the highest 
band of a multilevel system. This situation was not 
forseen in previous work [6]. In fig. 5 we show the 
quantity [(ho 1 A 1 Xi> 1 wli2, which by (5a) must be short 
compared to the laser pulse length for the (1,3,6) sys- 
tem of figs. 3 and 4. Evidently all but the shortest 
pulses that have been used in MPE experiments easily 
satisfy the adiabatic criterion for the parameters of the 
model (1,3,6) system, which though arbitrary are of 
a realistic order of magnitude. 

A true adiabatic inversion of the kind we have de- 
scribed cannot persist if the laser pulse is also turned 
off adiabatically, for then the system will simply re- 
main in the level [ho>, which approaches the ground 
state as E. + 0. However, the adiabatic approximation 
will be violated when (10) is no longer obeyed. In poly- 
atomic molecules, one expects the level spacing 6 to be 
a decreasing function of vibrational energy; thus (10) 
may be satisfied for low-lying vibration-rotation states 
but not for higher levels. In these circumstances the ex- 
citation of the higher levels more nearly resembles sud- 
den than adiabatic excitation, and some population 
will remain excited after the laser pulse is turned off. 
Of course, if a molecule adiabatically excited to high 
levels dissociates or undergoes a collision during the 
laser pulse, the energy deposited adiabatically is not 
returned to the laser field as E, + 0. 

:, F= 9117.997 [CM-:1 

: ,zo3 
E, ISV/CMI 

Fig. 5. The quantity T = l(hol A I A$ I ~,f as a function of 
laser field amplitude 2 e for the (1, 3,6) system of figs. 3 and 
4. By (Sa), the adiabatic approximation is obeyed for pulses 
that are long compared to Tp. 
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