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We consider the problem of coherent population trapping in a model quantum system consisting
of two (and briefly three) coupled continua of energy levels. While an earlier study [Z. Deng and J.
H. Eberly, Phys. Rev. A 34, 2492 (1986)] has demonstrated population trapping in a closely related
system, it has done so only for the case of a broad featureless continuum. We will demonstrate, on
the other hand, that the time evolution of the continuum is qualitatively very different when
different types of continua are allowed, and that population trapping is not likely to occur except in
the broad featureless continuum. We do show, however, that in some cases other counterintuitive

results surface.

I. INTRODUCTION

Recently, there has been some interest in the
phenomenon of coherent population trapping in quantum
systems. Coherent population trapping occurs when the
population is confined to some small subset of the entire
set of energy levels of the system, even though this subset
of energy levels may seem to be strongly coupled to the
remainder of the system. Relevent studies include those
dealing with discrete systems,' ~7 those dealing with the
interaction of discrete levels and continuous bands of en-
ergy levels,® !' and very recently with entirely continu-
ous systems.'?

The latter study, of Deng and Eberly (hereafter re-
ferred to as DE), is of the most concern to us because it
has very recently generated a certain amount of contro-
versy.!>!* DE investigated population trapping in the
system illustrated in Fig. 1. Figure 1 depicts an infinite
sequence of featureless continua, with transitions allowed
between adjacent continua. DE demonstrated that the
system population could be almost entirely trapped in the
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FIG. 1. The system investigated in DE. It has an infinite se-
quence of featureless continua, with transitions taking place
only between adjacent continua.

continuum initially containing the population, even if this
continuum were very strongly coupled to all of the other
continua. In fact, the stronger the coupling, the higher
the degree of trapping.

However, DE leaves a number of interesting points to .
our imagination. Reference 13 points out two minor
flaws in the work of DE: first, it does not actually show
that the population is trapped, but only that it manages
to somehow return to the initial continuum by ¢— o,
and, second, the complication of infinitely many continua
(as opposed to just two or three of them) is unnecessary.
Both of these minor points will be addressed in passing.

More interesting is the seeming implication (if only by
omission of discussion of any other cases) that the broad
featureless continuum is somehow representative of all
continua. Are we to expect that all other continua exhib-
it population trapping as well? This is the major question
we will address in the present study.

Three types of continua will be discussed. These may
be categorized as broad continua, narrow continua, and
strictly limited continua. While these ideas will be
defined more precisely in the following sections, they may
be understood roughly as follows: Each continuum is
characterized in part by its “width” in frequency space.
A continuum is “broad” if its width is much greater than
the Rabi frequency, and is “narrow” if its width is less
than the Rabi frequency. The difference between a nar-
row continuum and a “‘strictly limited” continuum lies in
the technical definition of the continuum width. The
width of a narrow continuum is defined to be the half-
width at half maximum (HWHM) of the coupling
coeflicients, while the width of a strictly limited continu-
um is the region outside of which there are no energy lev-
els. For example, a Lorentzian continuum can be either
broad or narrow, but cannot be strictly limited since
there are energy levels all the way to w—+ oo.

We will find that these continua evolve qualitatively in
very different ways. Like DE, we will mainly concern
ourselves with the case of very strong coupling, as in an
intense laser field. In this limit, only the broad continu-
um exhibits the population trapping found by DE. While
neither of the other continuum types exhibits population
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trapping, neither do they exhibit the same qualitative be-
havior as each other.

II. THE (CONTINUUM,CONTINUUM) SYSTEM

Consider the system depicted in Fig. 2. In this system,
we have two continua interacting with each other
through some potential. If the coupling coefficients
Voilwg,w,) connecting the two continua are not time
dependent, we can try to solve for the time evolution of
the system by means of the Laplace transform.

We will suppose that the probability amplitudes of the
levels in continuum O are denoted by C,(w,), where w, is
some continuous index like the frequency. The energies
of these (undriven) levels will be Ey(w,). Similarly, con-
tinuum 1 will have probability amplitudes C,(w,) and en-
ergies E (w;). (Of course, the probability amplitudes are
also functions of time, though not explicitly shown.)
Since we will be putting =1, we will simply suppose
that E,(w,)=w,. The interaction between the wyth level
of continuum 0 and the w,th level of continuum 1 will be
Voilwg,wy). Thus, Schrodinger’s equations will be

iColwe)=woColwe)+ [ Voy(wp,0,)C;(w))dwy, (1a)

iC (@) =0,C () + [ Viglw,w0,)Colwy)dawy. (1b)

The ranges of integration will be specified later when we
make a more specific choice of the interaction
VOI ((1)0, (O} ).

Because we are interested in the problem of trapping
population in continuum 0, we will specify initial condi-
tions at time ¢ =0 of

Colog)=alw,) (2a)
and
C(w,)=0, (2b)

where a is some function at our disposal.

Continuum 1

—-. )

Continuum 0
Vox(wo’wl)

@) —

FIG. 2. A system with two continua, labelled O and 1. No
transitions take place between two levels of the same continu-
um. Inter-continuum transitions are controlled by the function
<\f()l((l)o,(l)l).
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For reasons which are made clear in Appendix A,
there is no easy way to compute the Laplace transform
without some simplifying assumptions about the nature
of Vy,. Specifically, let us consider the simple approxi-
mation

Vorlwg,w,) = Vylwe)V, (). 3)

For example, for featureless continua we have simply
Voilwg,w,)=const, which is clearly consistent with Eq.
(3). It will be clear from Appendix A that there are also
more accurate approximations that would allow us to
compute the Laplace transform, but we will make no use
of them here.

Using the method of Appendix A, the Laplace trans-
forms of Cy(w,) and C,(w;) are found to be simply

~ _ 1 als)
Co((l)o)‘ S+iw0 a(w0)+ I*XO(S)XI(S)XI(S)VO(G)O) ’
4)
= _ als) Vilw))
Cl(a)l)— I_XO(S )X](S) s+ia)1 ’ (5)
where
_ o Vo((l)o)a(wo)
as)= [ P L (©6)
and
V, (0 do
Xa(s)= fh“is—a) . (7)

We will use these expressions to discuss both the cases of
broad and narrow continua, but will adopt an alternate
technique for the case of the strictly limited continuum.

III. BROAD CONTINUA

Like DE, we will accept the infinite featureless contin-
uum as a prototype broad continuum. In fact, to simplify
comparison, we will choose also the same initial condi-
tions:

172

1 , (8)

' |r
wytiy

a(wo): -

which describes an initial Lorentzian population distribu-
tion of width y. The featureless continua are character-
ized by the equations

Volwg)=1 (9a)
and

Vilw)=YY, (9b)
where YV is a dimensionless constant governing the

strength of the interaction. Under these conditions we
find that

2 —_—
-— f— ‘/
als) sty v, (10)

with
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XO‘S)E_lﬁ (lla) Continuum 1 '
and
XI(S)=_1'7TCVZ. (11b) Continuum 0
Thus,
29 ) Continuum -1
Clw)= — e_m’t——e_“)\/_—;r, (12) |
B 1+ 2 V2)(y —iw,) 4 o)
I Kl(wo ’wl)
and, in the limit ¢t — o, the total population of continu- ] @)
um 1 goes to o
I 1/-10(0)- 1 'wo)
47722 (13)
C 2 . — | )
= iy o

As in DE, this goes to zero in both the limits V' —0 and
Y — w0, though for certain intermediate interaction
strengths significant population can be transferred to con-
tinuum 1. Note that we do not need to take the limit
t— o0 to observe the population trapping since (by in-
spection), it is obvious that the total continuum 1 popula-
tion at any finite time never exceeds four times the limit-
ing value.

By the same token, the probability amplitudes in con-
tinuum O are just

a(w)
1+ 72?2
Thus, for V — o, while the population is trapped in con-
tinuum O, it is not actually trapped in the initial state. As
t becomes much larger than y ~!, the population does
indeed return to the initial state, but 180° out of phase
from what would have been expected if the population
had simply remained in the state.

The case V' =1/ is also of some interest. In this case,
all of the population is transferred from continuum O to
continuum —1. At the critical interaction strength
Y'=1/m, the probability amplitudes of the levels in con-
tinuum 1 at large times ¢ are

Colw,t)= [2m*V2Ze “7'+(1—72V2)e ~i@']. (14)

—lwt

Cilw))=—ialw)e (15)
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FIG. 3. The steady-state total populations of featureless con-
tinua O and 1 for various values of the interaction parameter V.
The population is initially in continuum O and is trapped there
for either V—0 or V— . For V=1/m, the population is en-
tirely transferred to continuum 1.

FIG. 4. A system with three continua, labelled —1, 0, and 1.
Transitions can take place between continua —1 and 0, and be-
tween continua O and 1, but not between continua —1 and 1.

Thus, except for a phase shift, it is just as if the popula-
tion were initially all in continuum 1 and there were no
interaction at all. The populations in continua O and 1
are shown in Fig. 3 for various values of V.

Incidentally, the same methods can be applied without
much difficulty to a system of three interacting continua,
as pointed out in Ref. 13. This system is depicted in Fig.
4. We suppose that the interaction between continuum
—1 and continuum O has strength YV _, and that between
continuum O and continuum 1 has strength V,. There
are two cases of interest. If the initial population is en-
tirely contained in continuum —1, then as ¢t — c the fol-
lowing results hold:

,  [1+Po-ar) )’
lc_y 1P~ o T (16)
1+7A(VI+V2))
|Col?— 2V 2 (17)
° 1+7(VI+Y2)) |’
v, v, |
c, - : 18
<l 1+ 7 Vi+V2)) e

For vV _, large or YV, large, the population of continuum
0 remains small. The population is either trapped in con-
tinuum —1 or else it is entirely transferred to continuum
1. The latter happens if V _; =V, while the former hap-
pens if V_,; >V, or V;>>YV_,. This situation is depict-
ed in Fig. 5.

The other case of interest is that of the population ini-
tially in continuum 0. Then as t — « we have

27V _,
1+a(Vi+V2,
1—72(V3+v2 ) |?
1+7X(Vi+V2)) ] ’

27V, 2
1+aX(Vi+VvL)) J '

!C—1|2‘—>

2
, (19)
]

|Col?2— [ (20)

|Cy|*— [ @21



39 CONTINUUM-CONTINUUM POPULATION TRAPPING

T —
sy \ -
N

/
0.6 — \f \

/ \wmuw .

/\ y

02+ | / ~_
/ Vo

0.1 - \/

0.0 T T T T T T —T T

0 2 4 6 8

POPULATION
o o
PO

1 1

e

RATIO OF INTERACTION PARAMETERS

FIG. 5. The steady-state populations in featureless continua
—1 and 1 for large interaction parameters V_, and V,. The
population is initially all in continuum —1. Continuum O con-
tains no population. The distribution of population among con-
tinua —1 and 1 varies according to the ratio of the interaction
parameters, V,/V _,. The population is trapped in continuum
—1 for either V/V_;—0o0r V,/V_—x. If V\=V_,, the
population is entirely transferred to continuum 1.

In this case, the results no longer depend on the relation-
ship between V _, and V. If either of these coefficients
is large, the population is trapped in continuum O.

IV. NARROW CONTINUA

We will consider the Lorentzian continuum as the pro-
totype of a narrow continuum, but also as an additional

Cilo)=—"t2
B G i)+

The steady-state population of level w in continuum 1 is
thus

_ Vig /7

(024 ?— V) +402V?’
This function is very small except for w==x%V (for
o <<%). The steady-state population is bunched into two
sidebands, far from the center of the continuum. The to-

tal population of continuum 1 may also be easily comput-
ed as

IC ()3 (26)

cvz
2AVi+o?)’
Since this clearly approaches § for large YV, the steady-
state population is therefore evenly distributed between
the two continua when V >>o.

Thus, we no longer have the population trapping we
had in the case of a broad continuum. In fact, we see
that for V >>0o that the system behaves something like a
two-level system. The population oscillates rapidly be-
tween the two continua. The oscillation is damped at

ICyl3s— 27
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example of a broad continuum. To do this, we replace
Eq. (9) by the relations

1/2

a/m_ | 22)

Volw)=V(0)/V=ale)= ol

where o is the “width” of the Lorentzian continua. This
YV is slightly different than the interaction strength used
earlier, since rather than being dimensionless it has units
of frequency. However, it still serves as a basic measure
of the interaction strength. Moreover, we have changed
the initial conditions of the problem somewhat. From
Egs. (6) and (7),

—i

Xo(s)=al(s)=x,(s)/V?= .
s+o

(23)

According to Eq. (5), the Laplace-transformed probabili-
ty amplitudes in continuum 1 are then

Colw.s)= i(s+o) Vilw)
re (s+0)+9? s+io”

(24)

Noting that the roots of the denominator are —o iV
and —iw, this expression is easily inverted to give the
probability amplitudes themselves as

[e "V sinV1 +(0 —iw)(e "' —e ~“'cosV1)]. 25)

[

rate o, forming a steady-state population distribution
with sidebands.

What if o >><V, so that the Lorentzian is a broad con-
tinuum rather than a narrow one? This comparison re-
quires some care in order to match the parameters of the
Lorentzian model with the parameters of the featureless
model used earlier, since the interpretation of YV has
changed. We must replace the YV in our Lorentzian mod-
el by VV'mo. Nevertheless, we still see that the popula-
tion of continuum 1 does approach zero as o becomes
much larger than V. Naturally, we do not expect exact
numerical agreement between the Lorentzian model and
the featureless model, since the initial conditions still
differ.

V. STRICTLY LIMITED CONTINUA

A strictly limited continuum is characterized by a
width o, just as the narrow continua considered in Sec.
IV. For the narrow continuum, o represented the
HWHM of the coupling coefficient functions V(@) and
V,(w). For the strictly limited continuum, on the other
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V,(w,)
e i%an(t)=%a,,_1(t)+%a,,+,(t) forn<—1,  (29)
. d g

Jw1> \ i<a_(0=Za_,(0)+Ya,(0), (30)

@y r—_// d .
CONTINUUM | lza,(t)—-‘\faﬁl(t)—i-?az(t), (31

Vo1(@ @)

Vo i%a"(t)=%an_1(t)+%an+1(t) for n > 1. (32)
\ If we could find a complete set of eigenstates for this
/ set of equations, then we could construct any arbitrary
N solution as a superposition of the eigenstates. There turn

CONTINUUM 0

FIG. 6. A (CONTINUUM,CONTINUUM) system with Che-
bychev continua of the second kind. The coupling coefficients
of this band shape go to 0 at w==o0.

hand, we have the stronger condition |w| <o.

As a prototype for the strictly limited continuum, we
will use what we call the Chebychev continuum of the
second kind, depicted in Fig. 6 and defined by the relation

2 172 2 1/4

Vol@)=V,()/V= (28)

3]
o
Lest the definition of this band shape seem too novel, it
should be noted that all strictly limited continua are, in a
sense, qualitatively similar to this band shape.!> This
function square integrates to unity just as the Lorentzian
band shape does.

It can be shown!® that there is a similarity transforma-
tion under which the Hamiltonian of this system can be
made tridiagonal—i.e., turned into a ladder system.
That this can be done quite easily for the (1, CONTINU-
UM) system has been shown in a previous publication.!’
The same method can be followed for our
(CONTINUUM,CONTINUUM) system, and the details
are presented in Appendix B.

In Appendix B, we produce a basis with probability
amplitudes a,(z) with n==1,%2, - --. The index n =0
is omitted for notational convenience. The indices n <0
are mixtures of continuum O states, while the indices
n >0 are mixtures of continuum 1 states. State » in the
tridiagonal basis has n nodes (i.e., n values w at which the
population is zero) when translated back into the conven-
tional continuum basis. We find that in the tridiagonal-
ized basis the Schrodinger equations of motion for the
system are
J

- ik
_trr e (1)

)= —a "¢,k )dk,
a"( ) ﬂf_”(02/4) LV2e2lka

i"“% S (—D)™2m —n)A"?"T,,, _,(o1),
g =

m=

(=]

a,(t)= ’

ot

M

(—i)

It

m=0

(—D™n+2m+DA72m " o (ot),

out to be two different kinds of eigenstates, which we will
denote as a\" and a\™". These are given by the (unnor-

malized) expressions

(£A)™" for n <0

a, 0= T L for n>0 (33)
— Y2 sink(n +1)
) 2
a{W(t, k)= ~iotcosk +UTsinkn for n <0 (34)
— gzy—e”‘"sink for n >0.
The auxiliary quantities A and o’ are defined by
o' =YV(1+21?), (35)
and
A==,
29 (36)

Thus there are two distinct a\! eigenfunctions, given by

a{' and a\'") , and infinitely many eigenfunctions
a/""(k) depending on the “wave-number” parameter k.
The a\P eigenstates exist only for V > o /2.

In the interest of simplicity, let us suppose that the ini-

tial conditions of the system are given by

a_;=1 and a,, ;=0 at t=0. (37

This means that we are initially placing all of the popula-
tion into continuum O, in the least dephased basis state.
As we might have expected from the fact that the a" ex-
ist only for V>0 /2, there are two regimes of interest.
The full solution is indeed a superposition of the eigen-
functions, but with the cases V <o /2 and V>0 /2 re-
quiring separate treatment.

The low field-strength case V <o /2 is somewhat the
simpler of the two. We find'® that

(38)

n<0

n>0,
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where J,, is the nth Bessel function.

This solution is already sufficient to investigate the special cases A=1 (V=0 /2) and A= (V=0). For V=0 /2, we
find simply
in+lJ..(n+1)(0't), n<0

@)=\ _iyr (o1), n>0, (40)

while for V=0, we find

"1 2 (I (at), n<0
ot

a,()= |, 41)

n>0.

Thus, for V=0 /2, the population simply divides into two equal wave packets. One wave packet moves up the ladder
of continuum 1, while the other moves the ladder of continuum 0. The two continua unrecoverably absorb equal
amounts of population. When V=0, on the other hand, continuum 1 naturally receives no population. All of the pop-

ulation is unrecoverably dephased into continuum 0, as the wave packet moves down the ladder.

In the case of larger interactions YV > ¢ /2, we find

2 T ik 122
a,(t)= 28)} s [ e ok + A @l =gt 42)
i xes -7 1 e
2(_i)n+l - m 2m +2 1_}"2 —nr, —io't n_io't
o > (—D)™n+2m+2)A Jn+2m+2(at)+Tk [e —(—=1)"e'“"], n <O,
m=0
an(t)= 2(_-1)'1 - 1_}\’2 . ) (43)
S S (—D™n—-2m—1DA" Yy . (ot)+ A"[e i€+ (—1)"e“"], n>0.
ot n—2m-—1 2

Though these expressions look a trifle complex, they have
several easily derived consequences. Clearly, a portion of
the population permanently oscillates between the two
continua, while another portion unrecoverably dephases
into the continua. Since all of the Bessel-function terms
decay to zero as t— oo, the total oscillating (as opposed
to decaying) population is seen to be !°

Total oscillating population

® 1—A2 _
— 2 T((1’(11+)_a,('l ))
=1—2A% A<1. (44)

When YV >>0, we have A <<1, and consequently most of
the population does not dephase into the continua.

This result is in contrast to the results we saw for the
narrow but not strictly limited continua. There, the sys-
tem behaved like a two-level system, with population os-
cillating rapidly between the two continua when V' >>o0.
However, there was always some nonzero degree of
damping, so that a steady-state distribution was always
produced after a time o~ ! no matter how small o > 0 be-
came. In the steady-state distribution, 50% of the popu-
lation went to each continuum, and no population oscil-
lated. For the strictly limited continuum, the two-level
behavior is present, but there is no damping. Thus, after
a time ¢ > o~ ! the narrow and strictly limited continua
are qualitatively very different from each other.

Why does this happen? If we recall the steady-state

population distribution produced in the narrow continua
systems, it consisted largely of two sidebands at frequen-
cy o==x%V. In the strictly limited continuum, there can
be no such sidebands since there are no energy levels at
those frequencies.

VI. SUMMARY AND DISCUSSION

We have investigated model quantum systems contain-
ing two or three interacting continua, and no discrete lev-
els. In order to carry out some of the calculations in-
volved, we have introduced (in Appendix A) a technique
for computing the Laplace transform of systems that
have a characteristic we refer to as low driver rank. Low
driver-rank systems are characterized by a small integer
parameter M. The smaller the M, the easier to compute
the Laplace transform.

For broad two-continua systems, we have found that if
each of the populations is initially in one of the continua,
then the population is permanently trapped in that con-
tinuum in either the case of weak interactions or the case
of very strong interactions. For some intermediate in-
teraction strength, the population is almost entirely
transferred to the other continuum. For narrow con-
tinua, the population initially oscillates between the two
continua, and then settles down into a steady-state distri-
bution. If the interaction strength is large, the steady-
state population returns entirely to the continuum initial-
ly containing it. For strictly limited continua, the situa-
tion is the same, except that not all of the population par-
ticipates in damping. Indeed, for very large interaction
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strengths none of the population participates in the
damping, and the two-level-like oscillations of the system
continue forever.

For broad three-continua systems (with the continua
arranged in a ladder), the disposition of population is
slightly more complex than in the two-continua systems.
If all of the population is initially in the middle continu-
um, then the population is permanently trapped there for
either very weak or very strong interactions. On the oth-
er hand, if the population is initially in one of the end
continua, for very strong interactions the population can
either remain trapped, or else it can be shared with the
other end continuum. However, no population moves to
the middle continuum.

An interesting extension to this work would be to ex-
amine the effects of half-infinite rather than infinite
continua—i.e., w_. <w < . However, we leave this for
another day.

min
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APPENDIX A: LAPLACE TRANSFORMS
IN SYSTEMS OF LOW DRIVER RANK

While each investigator seems to work out his or her
own tricks for computing Laplace transforms, there is a
simple and routine technique that can be used to get La-
place transforms for most model systems actually solved
in the literature. Consider a simple model quantum sys-
tem with the Hamiltonian operator

H=H,+V. (A1)

We will suppose that there is some convenient represen-
tation in which H, is diagonal, and that the
“matrix’rank ?° of the V operator is some small number

M =rankV. (A2)

If so, we say that the system is of low driver rank. In this
case, the V operator can be decomposed into an operator
product of the form

V=V,Vg, (A3)

where V; (considered as a matrix) has column-dimension
M, and V has row dimension M. V; and Vj are not to
be confused with projection operators. While they can be
expressed in terms of projection operators, in practical
terms they are most usefully determined by simple in-
spection of V.
If the basic Schriédinger equation under consideration

is

. d

1E¢(t)=H¢(t), (A4)

P(0) =1, (AS)
then the Laplace-transformed Schrodinger equation is
i[sP(s)—¢o]=H(s). (A6)

Substituting from Eqgs. (A4) and (A6), and rearranging,
we find

Y(s)=(is—Hy) "W, d(s)+ilis—Hy) 'y, (A7)
where the M vector ¢(¢) is defined by the expression

o(t)=Ve(2). (A8)
Multiplying Eq. (A7) by V and rearranging gives

S(s)=i[I—K(is)] "Wglis—Hy) ™ ',. (A9)
Here, I is the M-dimensional identity operator, and the
M X M matrix K (is) is defined by

K(is)=Vglis—Hy) 'V,. (A10)

It may not be obvious from Eq. (A8), but the elements of
the M vector ¢(¢) are typically the probability amplitudes
of any discrete levels, along with the various other quan-
tities resulting from the presence of continuous bands.
Thus, if quantities like the probability amplitude of the
ground state are the main interest, they can usually be
gotten from Eq. (A9) by inspection. If not, the full state
vector of the system must be found by substituting Eq.
(A9) into Eq. (A7). This gives 2!

Y(s)=i{I+(is—Hy) "W, [I—K(is)] 'Wg}

X (is —Hy) ™ 4y (A11)

as our final resulting expression for the Laplace trans-
form.

Equation (A11) is nice because calculating the Laplace
transform of even some very complicated systems be-
comes routine. In the case of our (CONTINUUM,
CONTINUUM) system, taking a few liberties with stan-
dard matrix notation (in order to include continuous in-
dices), we find by using Eq. (3) that

0(0)()) Vo(wo)
V= : : (A12a)
Vl(wl) 0(0)1)
and
Volwg) 0(w,)
VR: 0(&)0) Vl(wl) ’ (Alzb)
where O(w)=0. From Eq. (A9),
S(s)——tals) |1
¢(S) I—XO(S)XI(S) Xl(s) 5 (A13)

where @(s) and y,(s) are given by Egs. (6) and (7). Sub-
stituting this into Eq. (A7) gives Egs. (4) and (5) as the
full Laplace transform of the system.
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APPENDIX B: LADDER SIMILARITY
TRANSFORMATION

For any given Hamiltonian operator, it is possible to
find a variety of similarity transformations which convert
it to a tridiagonal form, thus producing a ladder system.
In some cases it is possible to construct this similarity
transformation analytically, following the method of Ref.
17.

In the case of our (CONTINUUM,CONTINUUM)
system, the key is to consider the functions V(w)? and
V,(w)?* as “weight functions” for the purposes of defining
orthogonal polynomials. Since there are two weight
functions, we will construct two sets of orthogonal poly-
nomials p\°(®) and p!'(w). Actually, it is more con-
venient to use normalized weight functions w®(w) and
w'(w), defined by

w'(@)=(V;(0)/V*), k=0,1, (B1)
where
172
k= [f Vk(a))zdw] , k=0,1. (B2)
Thus
J w*0)pFopF0)do=5,,, k=0,1. (B3)

We define basis vectors u, for n =+1,+2, etc., omitting
n =0, by

Vo(A)/VOp© (A)
0(A)

u_,= (B4a)

0(A)

V(8 /Y Up (A | (B4b)

u,=

where we define 0(A)=0.
Computing the matrix elements of the Hamiltonian is
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now straightforward, and gives
—al® 1
b b
(0)
1 —a
(0) (00) v
bi by
H= . .M )
b b
1 —a{V
bD bl
(BS)
where
Y =y O (B6)

The a and b constants are defined as the coefficients ap-
pearing in the recurrence relation 2

P (x)= (@ +xbFpFx ) —cFpik) (x),

k=0,1. (B7)

For any known orthogonal polynomials, these recurrence
coefficients can simply be looked up, for example, in Ref.
23. Of course, for a realistic system this would not be
true.

For the specific bandshape specified by Eq. (28), the po-
lynomials turn out to be Chebychev polynomials of the
second kind, with the resulting coefficients

—a,‘,”"/b,‘,"’)=0,

1/b\™=0 /2.

(B8)
(B9)

This leads directly to the tridiagonal Schrédinger equa-
tion of Egs. (29)-(32).
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