
Vol. 2, No. 3/March 1985/J. Opt. Soc. Am. B 451

Multichannel excitation of the quasi-continuum
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For a quantum system in which a continuous or quasi-continuous band of levels is excited by means of several di-
pole interaction channels, we develop a mathematical theory that simplifies the numerical solution of the Schr6-
dinger equation. The theory allows time-varying electric fields (or electric-field envelopes). It also takes into account
the exact shape of the band as well as the fact that different excitation channels see different band shapes. Accura-
cy of the results can be as high as desired. We show that the dephasing of the quasi-continuum probability ampli-
tudes in the conventional continuum basis corresponds to the propagation of well-defined waves in the new basis
that we introduce.

1. INTRODUCTION
Actual calculations involving real quantum systems can be
difficult in the sense that so many levels interact in such a
complicated way that calculations can require vast quantities
of computer time. It is therefore common in quantum optics
to construct simplified models in which one can easily study
certain phenomena without necessarily trying to mimic any
real system with the model. These phenomena include pas-
sage of optical pulses through media, intramolecular relaxa-
tion (IMR), and laser-induced dissociation.

One popular model is the (1, N) system, in which a special
state, the ground state, can interact with a band of N levels
but the N levels cannot interact among themselves. These
efforts are summarized by Shore.' In this model, dense bands
of levels absorb population from the ground state, making the
model useful for the study of IMR. Another popular model
is the ladder system, in which a series of states can interact
with adjacent states but not with any other state. The first
investigation employing the ladder-system model was that of
Goppert-Mayer in 1931.2 In this model, multiphoton ab-
sorption can occur, making it possible (for example) to study
questions of laser chemistry. Haydock3 showed that, in the
case of a constant electric field (envelope), all discrete systems
can be converted into ladder systems with reasonable ease.
We have shown 4 that the (1, band) system can be converted
into a ladder system even if the band is continuous and the
electric field varies and that this can be done with a similarity
transformation independent of time. Thus there is a certain
degree of unity in the two models.

However, these two models do not by themselves cover
(even conceptually) all phenomena of interest. In particular,
phenomenological damping is often added to the models.
Lefebvre and Savolainen 5 have developed a complicated
model combining features of both (1, N) systems and ladder
systems, with many adjustable parameters. Witriol6 has also
developed such models. Galbraith et al.

7 generalized the
treatment of (1, N) systems in another way by coupling two
(1, N) systems [or, alternatively, by using a (1, N) system in
which each level is replaced by two degenerate levels]; they
found that many of the results and methods previously ap-
plied to the (1, N) case can be extended to cover this case as
well.

Rather than a complex model, we present a mathematical
theory that aids in the accurate reduction of models containing
a continuous (or dense discrete) band of levels to a computable
form. By this we mean that the Schrbdinger equation is put
into such a form that one can use a numerical differential-
equation solver on a computer to determine the time evolution
of the probability amplitudes. Our method of reduction has
two basic virtues. First, time-varying electric fields are wel-
come. Second, continuous bands of levels may be present.
For various reasons, some of which are discussed in Section
2, the replacement of richly structured bands by phe-
nomenological damping may not be entirely satisfactory.
Therefore we not only take into account the exact band shape
but also actually allow each level not in the band to perceive
the band as having a different shape. (By the shape of the
band we mean the functional form of the dipole operator
matrix. Thus we do not force the dipole matrix into a specific
form.)

Yeh et al. 8 have considered another method for taking the
band shape into account in their interrupted coarse-graining
theory of (1, band) systems. They easily derive qualitative
information about the evolution of the system, given that the
electric field is constrained to be slowly varying. On the other
hand, our approach to the solution of (N, band) systems has
no such constraint and was designed to produce highly accu-
rate quantitative information.

We also present results of a numerical application of this
technique. This example is interesting because some features
of it are both analogous to and explainable by classical wave
theory. Because of this, despite our comments in the above
paragraph, our method can provide qualitative insight as well
as quantitative information regarding the time evolution of
the system.

All the approaches mentioned above, including our own
approach, deal with the time evolution of the system as dic-
tated by the Schr6dinger equation for state vectors. Some
phenomena, such as collisional damping, simply cannot be
dealt with in this framework, requiring density-matrix
equations of motion for adequate treatment. It may be pos-
sible to extend our method to cover this case, but, if so, we do
not know how to do it at the present time. Therefore, al-
though we state that the electric field may vary arbitrarily in
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time, it should be noted that the time of variation of the field
(as well as the time interval of interest) is shorter than the
collisional damping time.

CONTINUOUS BAND

2. THEORY

We present a method of dealing with continuous bands of
levels, and we constantly refer to continuous bands throughout
the paper. Actually, our results hold, to a large degree, for
discrete bands (such as dense quasi-continuous bands). We
speak this way, however, because the concepts that we use are
more familiar in the continuous case and because we want to
distinguish the band that we are simplifying from other
(presumably discrete) levels in the system. Moreover, we
speak of a classical electric field even though our results are
good for a quantum field. With this in mind, consider a sys-
tem consisting of N discrete levels and a continuous band of
levels. We allow dipole transitions among the discrete levels
or between the discrete levels and the band; however, no dipole
transitions are allowed within the band itself (see Fig. 1).
Schematically, the Hamiltonian of a quantum system inter-
acting semiclassically with an electric field can be written
as

H(t) = 6 + E(t)p.

Our notation assumes that the rotating-wave approximation
has been made, although this is by no means required in our
approach. The operator is diagonal in the matrix repre-
sentation that we use and contains the detunings of the levels;
the form of the dipole matrix g, reflects the selection rules
mentioned above. The electric-field envelope E(t) is allowed
to vary in time.

How should the band be treated computationally if we are
to solve the Schr6dinger equation numerically? The con-
tinuous band is often taken to act qualitatively as a reservoir,
absorbing population until none remains in the discrete states.
It is not uncommon to eliminate the band by introducing
phenomenological damping in the form of complex detunings
of the discrete states.6 This procedure is unsatisfactory in
some ways, although the introduction of complex detunings
is mathematically correct if the band has a Lorentzian shape.4

Although Lorentzian bands do sometimes arise, the Lorent-
zian band shape can by no means be thought of as typical
because of the extremely slowly decreasing shoulders of the
band. It is not clear if the Lorentzian-band approximation
is reasonable quantitatively unless a posteriori manipulation
of the bandwidth (phenomenological damping rate) is al-
lowed.

Consequently, we desire a more useful way of dealing with
multichannel excitation of the continuum. Not only must any
such method take the exact shape of the band into account in
a more accurate way, but it also must not limit our ability to
use a time-varying electric-field envelope E(t).

Denote the detunings of the discrete levels by Ak (where
k = 1, . . . , N) and the detuning of a level in the band by A
(where Amin < A < Amax). Let Ajk be the dipole matrix ele-
ment connecting the jth and kth discrete levels, and let p (A)
be the dipole matrix element connecting the kth discrete level
and the Ath continuous level. In this basis, vectors and ma-
trices are naturally partitioned into discrete and continuous
parts. We will write our vectors, for instance, as having N +
1 elements: The first N elements are the actual elements of
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Fig. 1. A typical system in which a continuous band is excited
through multiple channels. In general, the system may make any
transition except those between two levels of the band.

the vector corresponding to discrete levels, and the last ele-
ment combines all the elements corresponding to levels in the
band in the compact form of a function of A.

There is no reason to suppose that gk (A), which represents
the shape of the band as seen by the kth discrete level, should
be simply related to Aj (A) unless j = k. We will suppose,
however, that there is a certain underlying shape g(A) of
which all the k (A) are modifications. In particular, we as-
sume that there are polynomials Pk (A) so that

Ak (A) = (A)Pk (A)- (1)

By assumption, A(pA) = 0 for A < Amin or for A > Amax; thus
Pk (A) need be accurate only in the interval Amin < A < Amax-
As an approximation, Eq. (1) can be made quite accurate,
since by the Stone-Weierstrass theorem of real analysis
theory,9 a continuous function can be approximated by
polynomials on a closed finite interval to any desired degree
of accuracy. Furthermore, the actual choice of (A) is
somewhat arbitrary. For a given level of accuracy in the ap-
proximation of Eq. (1), how closely g(A) approximates gk (A)
merely influences the degree of Pk (A) and not our ability to
make (in theory) the approximation. That is, ifp(A) is chosen
poorly, then Pk (A) will be of higher degree.

It is possible to define a set of polynomials fk (A), orthogonal
with respect to the weight function t(A)2 (Refs. 10 and 11):

S Qmax
m A(A) 2fk(A)fj(A)dA = jk.

Amin
(2)

Such orthogonal polynomials have proven quite useful in other
investigations.3 ,4,12,13 We use them to define a new basis, in
which the Hamiltonian will be conveniently simplified. Let
our new basis be denoted by

V1 ,V2, . . ,VNUo,U1,- * *

where the vk are the unmodified discrete states
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(vY1 IIvk) = Yjk,

(vilMluk)= Pjk if k <M

=0 ifk>M.V1 = ,V2 = ,***XVN =5

and the Uk are based on the orthogonal polynomials, which
are defined above:

Uk =

(A)fk (A)

It should be mentioned that this basis does not actually span
the entire state space; however, the space spanned by these
vectors includes every vector that could be produced during
a numerical solution of the Schrodinger equation with the
population initially in the discrete states, so this basis is cer-
tainly good enough for our purposes. Clearly, this set of states
is countably infinite, whereas the conventional continuum
basis is uncountably infinite.

Now we can write all the nonzero matrix elements of the
Hamiltonian. By noting that all orthogonal polynomials
satisfy a recurrence relation of the form10 "14

fn+,(A) = (dn + enA)f(A) - cnfn-l(A), (3)

we find that

(VI 6IVk) = Ajbjk, (4a)

( uj I45 Iuj ) = -djej, (4b)

(uj 1 Iuj+ ) = lej. (4c)

Similarly, by noting that all polynomials can be written in
terms of the orthogonal polynomials f (A), we have

M
Pk(A) = E Pknfm(A) (5)

m=0

for some numbers Pkm, where M = maxideg(pk). There-
fore

N

M+1

00
I I

I I

I I

I I

I I

Fig. 2. Hamiltonian matrix, in our basis, is infinite but discrete. It
is tridiagonal with a border that is not full. The tridiagonal elements
are independent of the electric field.

Let us summarize what we have found so far. We have
found a similarity transformation that is independent of time
and of the field envelope E(t) in which (1) the detuning matrix
6 is tridiagonal, (2) the dipole matrix Au has only a few (i.e., a
finite number) nonzero elements, and (3) all the matrix
elements in the transformed system can be calculated easily.
Put another way, in our basis the Hamiltonian is tridiagonal
(and infinite) with a border that is not full [having only a finite
number of nonzero elements, given by Eqs. (4a) and (6); see
Fig. 2]. Since the transformation is independent of time, the
Schr6dinger equation can be solved (numerically, if desired)
in the new basis. That is, for any quantum system containing
a band of levels that do not interact among themselves, one
can approximate uniformly the band shape to any desired
degree of accuracy; furthermore, in the approximate system
there is a similarity transformation that is independent of time
for which the continuous band is converted into a ladder, of
which only a finite number of the lowest levels are coupled to
levels not in the ladder.

This result is a generalization of that for the N = 1, M = 1
case presented in Ref. 4. It is also a special case of an even
more general result that we will present in a future publica-
tion.

As an example, consider the case of two-channel excitation
of the Tchebychev continuum

(A)2 = 2 - (A S2]1/2
1 ~~~ ~ ~~7ra (ffO

where s is the detuning of the center of the band and o- is the
half-width; i.e., Amin = S - a and Ama, = s + . Chebychev's
name is attached to this shape since the orthogonal polyno-
mials formed are Chebychev polynomials of the second kind.
Aside from the fact that, intuitively, this shape does not seem
unreasonable, our reason for choosing it is that the elements
of the tridiagonal Hamiltonian are extremely simple.14 Recall
-also that the choice of A(A) is arbitrary [if we are willing to
accept the penalty of an increase in M for a poor choice of
A(A)]. Thus, regardless of our motives for choosing this
overall band shape, we are entitled to do so whatever the ac-
tual shape of the band. In Eqs. (4b) and (4c) we get

1/en = v/2

and

-d,,Ien= s.

For a numerical example, we set a = 0.3 cm-', s = A = A2 =

Ijk = 0, and Pio = pi = P20 = 1/\/2, P21 -1/\/" (see Fig.
3). This represents two discrete levels that cannot interact
with each other, one seeing the band as a modified Cheby-
chev shape bunching up near Amax and the other seeing the
band bunching up near Amin. We initially put all the popu-
lation in the ground state. The field is initially at zero but
ramps linearly to 0.05 cm-l at t = 1/30 nsec, remaining con-
stant until t = 1 nsec and then suddenly going to zero again.
In the conventional continuum basis there are uncountably
infinitely many coupled differential equations. Therefore
we work in the ladderlike basis of Fig. 2. Even here there are

(6a)

(6b)
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Fig. 3. A system in which a band of overall Chebychev shape is ex-
cited through two channels. The single continuous band is depicted
twice to emphasize that the two discrete states see a different band
shapes.

(countably) infinitely many levels. For the purpose of the
example, we truncate the system and retain only the lowest
100 levels in the ladder. Thus, in practice, there are two ap-
proximations made; Eq. (1) approximates the band shape
(allowing introduction of a discrete basis), whereas the trun-
cation makes the number of levels finite. The Schrodinger
equation is integrated from t = 0. The results are shown in
Fig. 4, in which population is plotted against level number; the

Time = 0 psec

Time = 270 psec

Time = 540 psec

ground state is on the extreme left-hand side of the graphs,
and the topmost level retained in the ladder is on the extreme
right-hand side. We see an apparent pulse of population that
forms near the discrete states and moves at a constant velocity
up the ladder. When the pulse reaches the point at which we
have truncated the ladder, however, it reflects (with a great
deal of interference) and moves back toward the discrete
states. Subsequent activity is shown in Fig. 5, which explores
what happens when our approximation of the truncation of
the band becomes important. When the reflected pulse
reaches the discrete states, the field has been turned off, and
there is no interaction, so the pulse is reflected again. In fact,
it continues to be reflected for a (relatively) long time. If we
had retained, say, only 50 levels in our ladder, Fig. 4 would be
idential (to the eye) with our Fig. 4 until about t = 900 psec,
at which time the pulse would reach the top of the ladder and
begin to reflect. Basically, there is so little population in the
highest levels (until the pulse reaches that area) that the
number of levels retained in the truncated system is of no
consequence almost until reflection begins. If this wavelike
behavior could be counted on (we will show below that it can
be, at least for the Chebychev band shape), and if we knew the
speed of the pulses (which turns out to be o), then we could
easily determine the number of levels that must be kept in the
ladder. If accurate probability amplitudes are desired for all
levels, then the number of levels kept must be larger than the
pulse speed multiplied by the time interval of interest. At the
end of this time, however, the pulse reflects, and the trunca-
tion of the ladder becomes important. If, on the other hand,

Time = 1080 psec

K /t \ 
rime = 1350 psec

Time = 1620 psec

Time = 1890 psec

Fig. 4. Population versus level in the system of Fig. 3 in the ladder basis. The extreme left-hand level is the ground state, and the extreme
right-hand level is the highest level kept in the ladder. The vertical scale runs from population = 0 to population = 1/15. (Any higher populations
are truncated.) Apparently, a pulse of probability moves up the ladder. In the final frame (t = 1890 psec), the interference pattern caused
by the beginning reflection of the pulse is seen.
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Time = 1620 psec

Time = 3510 psec

Time = 5130 psec

Time = 6750 psec

l _yzEN A~~~~ t-

Time = 8640 psec

Time = 9990 psec

Fig. 5. Continuation of Fig. 4 for long times in which the truncation of the ladder makes all the band (ladder) populations inaccurate. The
probability pulse continues to bounce around in the ladder, with one reflection occurring between successive frames.
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Fig. 6. Population versus level in a ladder basis, N = 1, M = 1 uniform rectangular band system. Time, 810 psec. The wave packet is moving
to the right and has not yet reflected for the first time. HWHM of the band in the conventional continuum basis is 0.3 cm-'; the band center
is at resonance; AtE(t)/2h ramps linearly from zero to 0.05 cm-' at t = 1/30 nsec, remaining constant thereafter.

we are interested in maintaining only the accuracy of the
amplitudes of the discrete states (or of the complex polar-
ization,41 3 which is almost the same thing), the requirements
are less stringent. In this case, twice the number of retained

levels must be less than the pulse speed multiplied by the
length of time that the field remains on.

Although the Chebychev band shape was chosen for the
simplicity of its tridiagonal detuning matrix, the effects seen

-
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above are not limited to the Chebychev band, as may be ex-
pected from the arbitrariness of gu(A). For example, in Fig.
6 we see similar pulse propagation in the case of a uniform
rectangular band with N = 1, M = 1. Nonetheless, the reason
for this wavelike behavior is certainly easier to understand in
the Chebychev case than in any other. Eberly et al. 12 dis-
covered these effects in a closely related system (a finite ladder
with constant field) but concluded that a wave analogy was
not entirely appropriate. For the Chebychev band, however,
the wave analogy is instructive.

Consider an infinite Chebychev medium in which the
quantities an (n = 0, i1, +2, . . .), which can be viewed as
probability amplitudes, obey the equation

da,/dt = i[(c/2an,-) + san + (/2an+A],

which is recognizably the Schr6dinger equation for those levels
in the Chebychev ladder that are not directly coupled to any
discrete states. As a trial solution, use

an(t) = exp[i(wt - n)],

which gives us the dispersion relation

o = + cos k, (7)

from which follows an expression for the group velocity of
wave packets' 5, 6 :

vg = 8aw1k = -a sin k.

Slowly spreading wave packets will, of course, have the max-
imum or minimum values, namely, vg = +a. Except for un-
important phase factors [which can be removed by an ap-
propriate transformation of an(t)], Eq. (7) is the dispersion
relation of a classical, transversely vibrating, massless string
mounted with massive beads. Another equivalent classical
problem is that of longitudinally vibrating masses connected
by springs. Thus it is no surprise that wave packets appar-
ently move up and down the ladder at constant velocity.
There is one difference from the two classical cases just
mentioned in that the Schr6dinger equation is a first-order
differential equation, whereas wave equations are of second
order. This means that, for a given k, there is no sign ambi-
guity in the group velocity. This is of little consequence un-
less the ladder system is truncated (the ends of the Cheby-
chev medium are tied down), causing eventual reflections.
However, it can be shown that the reflected wave is conju-
gated, thus reversing k and the group velocity. In fact, it can
be shown that the wave packets are distorted not by reflection
but only by spreading. Thus, even if the electric field E(t)
is turned off, Chebychev wave packets can continue bouncing
back and forth for a long time. Pulse spreading is exhibited
in Fig. 5. The apparent cumulative degradation of the pulse
is not due to the reflection of the pulse; rather, it is due to in-
creasing interference with portions of the pulse that have
spread but have not yet reflected. The motion need not
represent any actual displacement of population in the band
as seen in the conventional continuum basis; rather it repre-
sents an oscillation in the relative dephasing of the probability
amplitudes in that basis. When the Chebychev pulse is near
the top of the Chebychev ladder, the amplitudes are all de-
phased, and hence no process can extract population from the
band; whether the field is on at this point is irrelevant. On
the other hand, when the pulse is near the bottom of the lad-
der, the probability amplitudes of the band states in the

original basis are nearly in phase, and hence the band can
interact with the discrete states (if the field is turned on). Of
course, if the field is turned off the populations in the band
are always constant in the conventional continuum basis, re-
gardless of changes in phase. The behavior of Chebychev-
like waves could be considered to be the origin of recurrences
in quantum systems.

Finally, we should make a remark about the choice of u(A)
in practice. First, it is desirable to choose A(A) so as to min-
imize M (thus simplifying interaction of the discrete states
with the band). Second, it is desirable to choose A(A) so as
to exhibit Chebychev waves (thus simplifying application of
our qualitative knowledge). In fact, these considerations are
not mutually exclusive. The most convenient overall band
shape in practice is the weight function for Chebychev poly-
nomials of the first kind. For this shape, only the first re-
cursion coefficients (n = 0) in Eq. (3) differ from those dis-
cussed above, so Chebychev waves propagate just as before.
On the other hand, it is well known that in expansion of
function in terms of polynomials, use of Chebychev polyno-
mials of the first kind generally produces the fastest conver-
gence. That is, in general, this choice of ,t(A) minimizes
M.

3. SUMMARY

We have discussed multichannel excitation of the quasi-
continuum disguised as its inverse problem: multichannel
excitation of a discretized form of a continuum. The system
that we have considered has several discrete levels that may
interact with one another semiclassically by means of a dipole
interaction or with a separate continuous band of levels. We
say that this is a disguise of the problem because most of the
results that we have obtained hold equally well if the band is
discrete. Treatments of similar problems sometimes insist
that the electric-field envelope be constant or at least change
slowly, but we have allowed the field to vary without restric-
tions on the rate of change or on the size of the field. Fur-
thermore, we have taken into account the exact shape of the
band and have even allowed the various discrete levels to
perceive the band as being of different shapes.

Our general result is that there is a similarity transformation
independent of the electric field (i.e., of time) that simplifies
the Hamiltonian (and hence numerical solution of the
Schr6dinger equation) drastically. In this basis, the Hamil-
tonian is mostly tridiagonal, except for a finite number of
matrix elements proportional to the electric field. Thus the
continuous band turns into an (infinite) discrete ladder with
only a few of the lowest-lying levels coupled to the original
discrete levels by means of a dipole transition. Transitions
within the ladder, however, are independent of the field.

We find that pulses of probability are injected into the
ladder from the original discrete states. These pulses move
up the ladder forever in the case of a real continuum, but if
only a finite number of levels are retained (because of the
necessity of performing computer calculations), the pulses
eventually reflect and move down the ladder again. This
reflection could be viewed as the origin of both error in
discretization of continua and of recurrences in quantum
systems. In the case of an overall Chebychev band shape,
we proved that these pulses of population travel up and down
the ladder at constant speed and experience distortion because
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of spreading but not because of reflections. The medium (i.e.,
the ladder) through which the wave packets move has the
same dispersion relation as the classical, vibrating massless
string on which are mounted massive beads. However, choice
of the overall band shape is, to a large degree, arbitrary, so this
effect is present in all systems with finite-width continuous
bands.
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