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Introduction

This course deals with assembly language programming on the IBM
PC.  Assembly language is very difficult, at least at first, for most
people.  Because of this, it is very important to do as much actual
programming as possible.  There are, however, a number of topics that
must be discussed first.  For instance, before beginning to actually
learn any assembly language, we must first learn something about the
hardware structure of the IBM PC, the internal operation of the PC's
CPU, the use of the IBM PC programs that enable us to create other
assembly language programs, and even something about the IBM PC
operating system.  In order to begin programming as soon as possible,
some of these subjects will be only lightly skimmed at first.

We will be doing a lot of programming, so it is very helpful for
you to have easy access to a PC.  There are PCs available on campus for
your use, but it will certainly be easier if you have a machine
dedicated for your own use.  Although the book and the lectures will
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deal solely with the IBM PC (or IBM XT), you may use any "PC-
compatible" computer to do your work.  For example, I use a Zenith Z-
150 computer, and there are many TI Professional computers on campus
(and available in the bookstore for a huge discount).  For our
purposes, a "PC-compatible" computer will be any computer that runs the
MS-DOS operating system.  These include, for example, the Tandy 1000,
Tandy 1200, Tandy 2000, Compaq, Columbia, DG/One, IBM AT, etc.  One
restriction you should keep in mind, however, is that I will need to
see some of your programs in operation -- thus, either your program
must run on a "normal" IBM PC or XT (or on a TI Professional), or else
you must arrange for a computer of the proper type to be available on
occasion to run your programs.  Also, I will only be able to provide
you with system-specific information for the TI Professional and close
IBM PC or XT compatibles.  For any other computers, you will have to
get any system-specific information on your own.

TI Professional computers and IBM PCs are available in JO 4.918
and JO 4.920 respectively.  To use these facilities, you must register
in JO 4.920.  Introductory seminars on the fundamentals of using these
computers will be held in JO 5.504 at 10:00 am on Friday, May 31, and
at 10:00 am on Saturday, June 1.  These classes last approximately one
hour.  We will also cover some of these basics in class, but I strongly
recommend that you attend the seminars if you are not already familiar
with PC- compatible computers.

We will explicitly discuss (and have available for your use) only
the "standard" IBM PC programs (written by the software firm
Microsoft), namely:  the text editor program EDLIN, the assembler ASM
(or MASM), and the linker LINK.  These programs, particularly EDLIN,
are rather bad and you are encouraged to use any alternative
functionally equivalent programs.  For example, two alternative text
editor programs are WordStar (in "non-document" mode) and the built-in
editor of Turbo Pascal.  An alternative assembler is the "Turbo
Assembler" from Speedware.  I do not recommend buying these programs,
but (if available to you) you may find them somewhat more satisfactory
than the Microsoft alternatives.  WordStar is apparently available in
the computer labs.

The overwhelming majority of IBM PCs and compatibles use the MS-
DOS (or "PC-DOS") operating system, so in this course we will not deal
with any other PC operating system (Pick, Unix, CPM-86, etc.).  Any
version of MS-DOS is acceptible, with version 2.0 (or higher)
recommended.

What is Assembly Language?

"High"-level languages such as BASIC, FORTRAN, Pascal, Lisp, APL,
etc. are designed to ease the strain of programming by providing the
user with a set of somewhat sophisticated operations that are easily
accessed.  In the pantheon of high-level languages, FORTRAN is rather
low since the most sophisticated features it provides are the ability
to do complex arithmetic and to call functions and subroutines.  On the
other hand, Lisp and APL are somewhat higher since they provide the
ability to operate on entire (complicated) data structures.

In these examples, several other distinctions between higher-level
and lower-level languages may be perceived.  For one thing, FORTRAN is



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 12/361

CLASS 1

more flexible in a certain sense than (for example) APL.  Using a high-
level language is convenient if the sophisticated features provided are
those you need, but almost impossible if not.  FORTRAN users often
exploit knowledge of how the language is implemented to accomplish
things that are apparently impossible, such as addressing character
strings as integer or logical variables, treating multiply dimensioned
arrays as one- dimensional arrays, treating complex numbers as pairs of
real numbers, etc.  Such tricks are impossible in APL since the user
can never understand the APL implementation or exploit his knowledge if
he did.  APL users have their own "bag of tricks", but these usually
involve just an understanding of the proper use of APL operators rather
than a determined effort to subvert their use (as in FORTRAN).

Another aspect of high-level languages is that they tend to be
efficient only in their narrow range of special use.  For example, Lisp
may be wonderful if you are doing recursion or playing with list-
structures, and APL is wonderful if you are doing number crunching on
arrays, but for simple general-purpose items like do-loops they are
laughably inefficient compared to FORTRAN or C.

The lesson we derive is this:  a very low-level language might be
very flexible and efficient (in terms of speed and memory use), but
might be very difficult to program in since no sophisticated operations
are provided and since the programmer must understand in detail the
operation of the computer.  The fact that only primitive operations are
available means that the source code for such a low-level program tends
to be much longer than the source code for an equivalent higher-level
program, even though the final compiled code may be much shorter.  One
would only want to use such a language if speed and memory consumption
were very critical concerns, and only for the most critical parts of a
program.  If a program spends 90% of its time executing 10% of its
code, that 10% might profitably be converted to a very low-level
language.

Assembly language is essentially the lowest possible level of
language.  It is almost a one-to-one representation of the actual
instructions understood by the microprocessor, but in a somewhat human-
understandable form.  Its relationship to high-level languages is
exactly as described above.

Some of these points are illustrated by a result apparently
discovered by Lipow (M. Lipow, "Number of Faults per Line of Code,"
IEEE Trans. on Software Engr., vol. 5, SE-8, no. 4, July 1982, as
quoted by M. Franklin in Using the IBM PC:  Organization and Assembly
Language Programming).  The number of programming faults N per line of
source code is empirically given by

N/P = A + B ln P + C (ln P)2  ,

where P is the number of executable lines of source code and A, B, and
C are constants varying with the programming language used.  Typical
values are A=0.001184, B=0.0009749, and C=0.00001855 for assembly
language, and A=0.005171, B=0.002455, and C=0.00004638 for higher-level
languages.  Thus, per line assembly language is more fault-free than a
high-level language.  However, each line of assembly language performs
a much simpler task than a line of, say, Lisp.  Thus many more lines of
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assembly language are need for any given algorithm and the number of
faults per program is therefore dramatically larger.

In microprocessor assembly languages (including IBM PC assembly
language), the following features are typically built-in:  the ability
to read the values stored at various "memory locations", the ability to
write a new value into a memory location, the ability to do integer
arithmetic of limited precision (add, subtract, multiply, divide), the
ability to do logical operations (or, and, not, xor), and the ability
to "jump" to programs stored at various locations in the computer's
memory.

Not included are the ability to directly perform floating-point
arithmetic (with microprocessors prior to the iAPX88 used in the IBM
PC, even integer multiplication and division were not included), the
ability to perform graphics, and the ability to access files.  All of
these functions must either be performed indirectly by (assembly
language) software, or else must be performed by optional add-on
hardware.

Let us consider a simple comparison of high-level and assembly
language programs.  Of course, at present we aren't capable of
understanding in detail what the assembly program does, but at least it
will give us the flavor of assembly programming.  Here is a segment of
FORTRAN code to average together the N numbers stored in the array
X(I):

INTEGER*2 I,X(N)
INTEGER*4 AVG

.

.

.
C AVERAGE THE ARRAY X, STORING THE RESULT AS AVG:

AVG=0
DO 10 I=1,N

10    AVG=AVG+X(I)
AVG=AVG/N

.

.

.

Here, on the other hand, is part of an IBM PC assembly program to do
the same thing.  As above, we will assume that the values to be
averaged are INTEGER*2, since floating-point arithmetic isn't
available, but we will use INTEGER*4 to store the intermediate results.
In the following program, n, avg, and x are names of memory locations
used to store data:

mov cx,n             ; cx is used as the loop
; counter.  It starts at N and
; counts down to zero.

mov dx,0             ; the dx register stores the
; two most significant bytes of
; the running sum

mov ax,0             ; use ax to store the least
; significant bytes

mov si,offset x      ; use the si register to point
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; to the currently accessed
; element X(I), starting with
; I=0

addloop:
add ax,word ptr [si] ; add X(I) to the two least

; significant bytes of AVG
adc dx,0             ; add the "carry" into the two

; most significant bytes of AVG
add si,2             ; move si to point to X(I+1)
loop addloop         ; decrement cx and loop again
; if not zero
div n                ; divides AVG by N
mov avg,ax           ; save the result as AVG

In this example, the assembly program had 10 executable
instructions (as opposed to 4 for the FORTRAN program), even though it
only performed integer arithmetic.  Moreover, writing it required
intimate knowledge of how the variables x, n, and avg were stored in
memory.  Also, the FORTRAN program was somewhat self-documenting in
that it was obvious what the program did (even to someone not familiar
with FORTRAN).  The assembly program, however, was not really
understandable (even to the initiated), and required extensive
comments.  The assembly language version is much faster than the
FORTRAN version.  The (Microsoft) FORTRAN version executes (on an IBM
PC) in about 2.2 seconds with n=32000, while the assembly version needs
about 0.4 seconds.

IBM PC System Architecture

I have already referred to IBM PC's microprocessor and to its
memory.  Let us consider in more detail what these components are and
how they fit together to form a computer such as the IBM PC.

The microprocessor or CPU is probably the part we really think of
as the computer.  It has the job of reading "instructions" from the
computer's memory and executing them.  These instructions are the type
mentioned earlier -- they access memory, do arithmetic and logical
operations, and perform a few other services as well.  In the IBM PC,
the CPU consists of a single "chip", called the 8088 or iAPX88,
designed by a company called Intel.  Various other "compatible"
computers may use any of several other similar CPUs:  the 8086
(iAPX86), 80188 (iAPX188), 80186 (iAPX186), 80288 (iAPX288), or 80286
(iAPX286).  In theory, all assembly language programs written for an
8088 microprocessor should run on all of these other processors as well
(though not vice-versa).  This does not mean, however, that such
programs will necessarily work correctly (even though they run).  This
will become clearer in a moment.

The memory of the computer is used to "store" instructions
(programs) or data.  To the computer, the memory appears as a sequence
of locations (or addresses).  At each address is stored a byte -- i.e.,
an integer number with a value between 0 and 255.  There are two types
of memory in an IBM PC.  These are the ROM -- or Read Only Memory --
and the RAM -- the Random Access Memory.  For a ROM, as its name
implies, the stored byte may only be read by the CPU.  For a RAM memory
location, the stored byte may be both read and written (i.e., changed).
RAMs also differ from ROMs in that they are "volatile"; when the
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computer is turned off, all information stored in RAM is lost.  By
contrast, the data in a ROM never changes.   Both types of memory are
"random access" in the sense that the byte at any address may be
accessed at any time.  In the IBM PC, there are just over one million
possible memory addresses.  However, not all of these addresses
actually refer to RAM or ROMs.  Typically, the highest addresses are
ROM locations.  The lowest 640K ("K" means "1024 bytes") may have RAM
memory attached (although 256K is a more usual amount of RAM).  Most of
the remaining "address space" is unused.

The video display also typically uses a small amount of the
remaining address space.  This will be discussed much later.

In the IBM PC, there is a 64K address space, known as I/O space,
which is completely separate from the one- megabyte memory address-
space mentioned earlier.  Most I/O occurs by using the I/O space.  Each
I/O device actually installed in the computer occupies an address, or
series of addresses, in I/O space.  These devices include the video
display controller, the keyboard, the floppy disk controllers, the hard
disk controller, the clock, the serial ports (for modem communications,
printers, plotters, or other devices), and the parallel port (for the
printer).

This system architecture is illustrated in the following figure:

__________                             | M |
|          |   | I |      _________     | E |      _____
| KEYBOARD |---| / |     |         |    | M |     |     |
|__________|   | O |-----|  VIDEO  |----| O |-----| ROM |

______    |   |     | DISPLAY |    | R |     |_____|
|      |   | A |     |_________|    | Y |
| DISK |---| D |                    |   |
|______|   | D |                    | A |

________    | R |                    | D |
|        |   | E |                    | D |
| SERIAL |---| S |       _____        | R |      _____
|  PORT  |   | S |      |     |       | E |     |     |
|________|   |   |------| CPU |-------| S |-----| RAM |

__________    | S |      |_____|       | S |     |_____|
|          |   | P |                    |   |
| PARALLEL |---| A |                    | S |
|   PORT   |   | C |                    | P |
|__________|   | E |                    | A |

| C |
| E |

ASSIGNMENT:  Read and do the problems for Chapter 0 in the book.

Binary Arithmetic

(See the book.)

The Process of Assembly

The process of creating working assembly language programs
involves a number of steps, which I will describe in a general way.
Later, we will see how to carry out these steps in detail.
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Assembly language is a compiled language, in the sense that
assembly language source-code must first be created with a text-editor
program, and then the source-code must be compiled.  Assembly language
compilers are universally call "assemblers".

Five types of auxiliary programs are commonly used in 8088
assembly language programming.  First, as mentioned above, is the text-
editor, which is used to type in assembly language source code and then
to edit it when errors are discovered.  Second is the assembler.  The
assembler "assembles" the source code, creating "object" code in the
process.  The object code is neither executable nor human- readable.
The third program is the linker.  The linker combines object code
modules created by the assembler or by various high-level compilers.
For example, if we wrote a program yesterday to convert hexadecimal
numbers to decimal, and we write a program today to convert decimal
numbers to hexadecimal, then we may want to write a third program
tomorrow which, when linked with these, reads two decimal numbers from
the keyboard, converts them to hexadecimal, adds them, and writes the
back to the screen in decimal.  The fourth program, the loader, is
actually built in to the operating system and is never explicitly
executed.  The loader takes the "relocatable" code created by the
linker, "loads" it into memory at the lowest available location, and
runs it.

The fifth program, the debugger, provides an environment for
running and testing assembly language programs.  With the debugger, a
program may be slowly executed in a controlled way so that errors can
be more easily located an corrected.  The debugger also incorporates
its own simple editor and assembler, so simple assembly language
techniques can be typed in and tested "on the fly".

DOS and Simple File Operations

The operating system used on the IBM Personal Computer is known as
MS-DOS, or PC-DOS, or simply as DOS.  DOS provides the environment in
which programs (including assembly language programs) run.  (We will
see later how to access the functions provided by DOS from within
assembly programs.)

DOS also provides a set of helpful utility functions which must be
understood in order to successfully program under DOS.

When the computer is turned on, the first thing it does is to
execute a self-test program.  (This can take quite a long time for an
IBM PC, and somewhat less for various compatible computers.)  After all
testable components (particularly the memory) are tested, the computer
"boots up" DOS and prompts the user for input.  On a system with a hard
disk this may happen automatically; if the system has no hard disk
(only floppy disks), a floppy disk containing the operating system must
be in the appropriate disk drive.  (This is usually the leftmost
drive.)   What prompt is displayed depends a lot on the configuration
of the computer and the "boot disk".  Typically, the user is prompted
to enter the date and the time.  Do not skip this.

When the computer displays the prompt "A>" (or "B>", or "C>",
etc.), it is in "command mode", waiting for the user to type in a
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legitimate DOS command.  DOS's job is to manage the IBM PC file system,
and most commands somehow manipulate files.  Each disk drive attached
to the computer is given a letter, starting with "A" for the first
floppy drive, "B" for the second, etc.  The hard disks, if any, are
given letters after the floppies.  For example, in a system with two
floppies and a hard disk, the hard disk is drive "C".

At any given time, one disk drive is designated as the "default
drive".  Which drive is the default is indicated by the command prompt.
For example, if the input prompt is "B>", then the default drive is
"B".  The default drive can be changed by typing the new default drive
letter followed by a colon (and a carriage return).  Thus, "A:<cr>"
would change the default drive to "A".  Most DOS commands automatically
work on the default drive.

The data on a DOS disk is stored in "files", each of which has a
name and various other attributes.  In DOS, a filename consists
basically of 8 (or less) alphanumeric characters.  There is also,
optionally, a 3 character "extension", which is separated from the name
by a period.  Here are examples of valid filenames in DOS:

FOO
FOO.BAR
TABBY.CAT
12345678.910
FILTHY5.

Typically, the 3 character extension is used to designate the type of
file.  Thus, a Pascal source filename always ends in ".PAS", a FORTRAN
source filename always ends in ".FOR", an assembler source filename
always ends in ".ASM", and executable machine code always ends in
".COM" or ".EXE".

The directory of all files on the default disk can be obtained by
using the DOS command "DIR" (the quotation marks are not typed on the
computer).  Here is a sample directory:

Directory of  E:\editing

PCWSMSGS OVR    30976  11-12-84   2:52p
PCSOVLY1 OVR    43264   5-28-85  12:28p
MAILMRGE OVR    13568   3-28-84   2:40p
MERGPRIN OVR     7936   4-24-85   3:43p
WSMSGS   OVR    26624   4-24-85   3:43p
WSOVLY1  OVR    27392   4-24-85   3:43p
SINGULAR TXT    62976   5-02-85   3:01p
5330     CPM    18441   5-27-85   4:19p
SINGULAR BAK    62976   5-02-85   3:00p
TEMP                0   5-28-85   1:00p
5330     BAK    22912   5-28-85  11:50a
5330     TXT    25984   5-28-85  12:59p

14 File(s)   2207744 bytes free

This particular directory contains 14 files, leaving about 2 megabytes
of room on the disk for new files.  One of the files, called
"SINGULAR.TXT" contains 62976 bytes, and was last updated on May 2 at
3:01 in the afternoon.  The directory of a drive other than the default
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can be obtained by explicitly specifying the drive.  Thus, "DIR B:"
gives the directory of the "B" drive.

Files can be deleted with the "ERASE fn" command (where "fn" is
meant to represent any filename).  Thus, "ERASE TEMP" would erase the
file named "TEMP" on the default drive, while "ERASE B:TEMP" would
erase a file on drive "B".

A file can be renamed with the "RENAME oldname newname" command.
Thus, "RENAME TEMP FOO.BAR" would rename TEMP on the default drive as
FOO.BAR.

Source files may be displayed on the CRT with the command "TYPE
fn".  Thus "TYPE SINGULAR.TXT" would display the contents of
SINGULAR.TXT on the default drive.

Files may be duplicated or copied from one drive to another by
using the "COPY oldfile newfile" command.  For example, in order to
copy the file named "SPIFFY" on drive A: to drive B: (renaming it
"SPOFFY" in the process) we could say "COPY A:SPIFFY B:SPOFFY".  If we
wanted the new file (on drive "B") to retain the name "SPIFFY", we
could use the simpler syntax "COPY A:SPIFFY B:".  If we were actually
logged onto drive "B" (i.e., if "B" was the default drive), then we
could employ the still simpler syntax "COPY A:SPIFFY".

If you type a command which DOS does not recognize as being one of
its built-in commands (like those above), it will search the default
disk's directory for an executable file of that name.  For example, if
you typed "EDLIN<cr>", DOS would look for a file named either
"EDLIN.EXE" or (in this case) "EDLIN.COM".  Having found EDLIN.COM
(which is a very poor text editor program used, among other things, for
creating assembly language source files), it would then load the
program into memory and execute it.  From that point on, EDLIN, rather
than DOS, would be in control of the computer.  Any prompts seen after
this are EDLIN prompts and must be responded to with EDLIN commands
rather than DOS commands.

DOS also has certain built-in editing functions that you can use
if you make a mistake in typing in a command.  Using the backspace or
back-arrow key erases the last character you typed in.  Pressing the
escape key erases the entire line you have typed.  Pressing the F3
function key automatically repeats the last command you typed in
(although you still have to press the carriage return to make it
start).  There are also several other editing keys that you will become
familiar with later.

In dire extremity the computer may be "re-booted" by
simultaneously pressing the control, alternate, and delete keys.
[Generally, you only need to do this if you have crashed your program.
However, on an IBM PC, it is all-too- easy to crash DOS at the same
time.  If this happens, ctrl- alt-del won't work, and you'll have to
turn the computer completely off to re-boot.]
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EDLIN and Editing

As mentioned before, the text editor program used for  creating
assembly language source code is EDLIN.COM.  We will discuss this
editor (even though it is very bad) because it is the standard editor
provided with MS-DOS.  [However, anyone lucky enough to have a copy of
any other editor is welcome to forget that EDLIN even exists.  The only
requirement on the editor is that it be capable of producing standard
ASCII text files.  In particular, WordStar is suitable for this in
"non-document" mode.  In "document" mode, however, the files WordStar
creates are non-standard.]

EDLIN is a "line editor" similar to (and probably derived from)
the the primitive CP/M line editor ED.  In order to edit a file with
EDLIN, use the command "EDLIN fn", where "fn" is the filename.  The
file need not exist in advance (that is, you can create a file from
scratch).  Having done this, you find yourself in EDLIN command-mode,
from which you can type in EDLIN (but not DOS) commands.

EDLIN is rather simple to use.  Every line of text in your file is
given a number by EDLIN, and you specify these numbers to indicate
which lines a particular EDLIN command applies to.  For example,
suppose you are editing a file called TEST.ASM which contains 100
lines.  The EDLIN command to "list" lines of text is "L", and to
specify that you wanted to list lines 5 through 24 you would use the
command "5,24L".  If you did this, EDLIN would respond with something
like

5: (line 5)
6: (line 6)

.

.

.
24: (line 24)

where "(line 5)" represents the text of line 5, etc.  Line numbers can
run from 1 to 65536, and you can also use the special symbols "." and
"#" as line numbers.  "." is the same as the line-number of the
"current line", and "#" is the highest possible line number.  Thus, for
example, ".,#L" would list all text from the "current" line to the end
of the file.

The command "I" allows you to insert new lines into the text.  For
instance, "5I" would let you start inserting lines prior to the present
line 5.  EDLIN presents you with a prompt and allows you to type in new
lines (just as in DOS command mode) until you finally enter a line of
the form F6<cr>.  EDLIN also renumbers all of the lines in your file.
(The line-numbers used by EDLIN are for editing purposes only and don't
actually appear in your file.)

Simply typing a line-number by itself (and a carriage return)
allows you to edit just that line.  The present form of the line is
displayed on the screen, and on the immediately following line you are
given a prompt to input the new form of the line.  Usually, the present
form is nearly correct and you simply want to make a few changes
(although if you wanted to you could type in an entirely different
line).  You do this by using the DOS built-in editing functions.  I
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mentioned a few of these functions earlier.  Here is a more complete
list:

F1 or right-arrow: The present character is ok.  Move one
character to the right.

F2x:  The characters up to x are ok.  Move over to x.

F3:  The entire line is ok (or, at least, any
changes are near the end of the line).  Move to
the end of the line.

left-arrow:  Move backward one character.

DEL:  Delete the present character.

F4x:  Delete the characters up to x.

ESC:  Oops!  Forget the changes I've made.

INS:  Go into "insert mode".  In insert mode, you can
insert as many characters as you want.  To get
out of "insert mode", press <INS> again.

Another EDLIN command is the "D", or "delete lines" command.  For
example, you can delete lines 5 through 24 by using the command
"5,24D".

You may search your file for a certain string with the "S"
command.  For instance, "5,24Sstring" would search lines 5 through 24
for the string "string".

The "R" command can replace a given string by any other string.
For example, "5,24RoldstringF6newstring" will replace all occurrences
of "oldstring" in lines 5 through 24 by "newstring".  You can also put
a question mark in front of the "R", and EDLIN will prompt you to see
if the replacement is all right.

"Q" quits EDLIN without saving any of the changes you have made.
"E" also quits, but saves your work.  In general, DOS editors
(including EDLIN) do not erase your original copy of the text when they
save the new copy.  Rather, they rename the old copy to have the same
name, but an extension of ".BAK".  Thus, you can generally recover a
prior version of your file if you make some ghastly error.

ASSIGNMENT:  Use EDLIN, or any other convenient text editor (suitable
for creating source programs), to write a few paragraphs explaining
your reason for wanting to learn 8086 assembly language.  This
description should occupy between one and two single-spaced pages when
printed.  If your reasons don't occupy this much space, fill the
remainder of the space with text from page 178 of the textbook.  Use
the features of the editor program to correct any typing errors you
make.
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Questionnaire for CS 5330:  IBM PC Assembly Language

1) Your name:                                  .

2) Your field of study:                                .

  Graduate         Undergraduate

3) Your level of programming experience:

  Novice

  Not too bad

  Expert/hacker/professional.

4) List any computer languages you feel proficient in:

5) Have you ever used any type of assembly language?

  No          Yes

6) Do you own, or have easy access to, any type of IBM-PC
compatible computer?  (That is, any computer which runs
the MS-DOS or PC-DOS operating system.)

  No          Yes

If "yes", what type of computer is it?
Are you very familiar with this computer?

  Yes         No

7) What is your reason for taking this course?  (Or:  What
are you hoping to learn from this course?)
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University of Texas at Dallas
COURSE NOTES FOR CS-5330
IBM PC ASSEMBLY LANGUAGE

CLASS 2

Some Comments

-1.  Beyond the textbook, you are not, NOT, NOT required to buy any
books or software for this course.  In particular, you are not required
(or even advised) to buy the products called "Turbo Pascal" or "Turbo
Assembler".  If you have access to either of these products, on the
other hand, Turbo Pascal has a much better text editor than EDLIN, and
Turbo Assembler (which I have never used) is reputed to be a better
assembler than MASM.

0.  The lecture notes are available in WS-compatible format on floppy
disk.

1.  Several of the surveys stated that the reason for taking the course
was "wanted to become computer literate", or similar comments.  A
graduate-level assembly-language course is not a good place to
accomplish this.  A certain amount of programming experience is
necessary to grasp what's going on.  (I have to not only teach assembly
language, but the use of the IBM PC as well.  I cannot do all of this
and additionally teach introductory programming.)  I suggest a Pascal
course for complete beginners.  You should be in this course only if
you know some programming language on some computer fairly well.

2.  Office hours:  Monday through Thursday, 3:00-7:00.

3.  T.A.:  Please direct any questions outside of class to me and not
to the T.A.

4.  In order to use the IBM PC, you must first be able to turn it on
and "boot" it up.  This involves several things.  First, you must have
a disk containing the operating system.  This disk is known as a "DOS
disk" or "system disk".  You should not ever store files on this disk.
It is used only to hold the operating system and certain utility
programs such as the line editor EDLIN.COM.  To boot up the system, put
the system disk in drive "A" and then turn the computer on and close
the door of the disk-drive.  Similarly, when you are done with the
computer, open the door of the disk drive and then turn the computer
off.

5.  Since all of our work will involve creating and manipulating disk
files, and since disk files are stored on floppy disks, you will need
to acquire some floppy disks.  In theory, you need "soft-sectored,
double-sided, double-density" disks, but in practice any soft-sectored
5 1/4 inch disks will work.  The bookstore sells these for about $3
apiece.  If you are willing to buy them in lots of ten (you will really
need more than one disk anyway), you can get them much cheaper.  Sabet
Electronics on Floyd Rd. sells boxes of ten for $12, while the Micro
Store on N. Central sells (I believe) boxes of ten for $20.  Unless you
are a fool who wants to be parted from his money, do not buy disks in
Computerland or similar stores.
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6.  Formatting floppy disks.  Before floppy disks can be used to store
files, they must be "formatted".  To format a new disk, put the system
disk in drive "A" and the new disk in drive "B".  Use the command
"A:FORMAT B:/V".  Check carefully to make sure you don't accidently
format the system disk.

7.  Getting printouts.  If the computer you are using has a printer
attached, you can get printouts in several ways.  First, an exact
picture of the screen (a "screen dump") can be obtained by using the
"print screen" button on the keyboard.  Second, the DOS "TYPE" command
(which prints a text file on the screen) can be used along the "printer
echo" feature of DOS.  "Printer echo" can be initiated (and terminated)
by pressing ctrl-P (that is, by simultaneously pressing the "ctrl" key
and the "P" key).  In printer-echo mode, everything that is displayed
on the screen is simultaneously sent to the printer.  Thus, TYPEing a
text file would also result in it being printed.  Third, in MS-DOS, i/o
devices are treated in some ways like disk files.  The printer is
usually given the "file"name "LPT1", and you can print a text file by
COPYing it to the "file" LPT1.  For example, the file TEXT.TXT could be
printed by using the command "COPY TEXT.TXT LPT1".

Review of the Last Class

Recall that in the last class we basically did three things.

First, we had some general comments on the nature of assembly
language and on the IBM-PC.  The most important points made were these:
That assembly language programs are very small and fast at runtime, but
that their source-code is very long and takes a long time to write.
That assembly language is very primitive in the sense that most
operations are performed by means of integer and logical arithmetic and
by instructions that move data around in memory.  That assembly
language is a compiled (or assembled) language and that to create a
working assembly language program we must run the text editor (usually
EDLIN) to create the source code, then run the assembler (usually MASM)
to assemble the source code down to object code, and finally to run the
linker (LINK) to produce executable code.

Second, since using EDLIN, MASM, and LINK involves creating and
manipulating a number of files on the disk, we had to learn something
about the MS-DOS operating system.  We learned how to use the commands

DIR       list the disk's directory
RENAME    rename a file
ERASE     erase a file
TYPE      display a source file on the screen
COPY      copy a file.

Also, we learned something about DOS's built-in editing commands.  DOS
always remembers the last command typed and allows you to re-use the
command (possibly editing it first).  These editing keys are also used
extensively in EDLIN.  Here are a the editing keys we covered:

Backspace or left-arrow:  unrecall a character.
ESC:  unrecall entire line.
F1 or right-arrow:  recall one more character.
F2x:  recall all characters up to character x.
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F3:  recall rest of line.
DEL:  skip a character.
F4x:  skip to character x.
INS:  toggle in/out of "insert" mode.

For example, if the buffer contained "COPY A:FOO.BAR B:", then the with
the following sequence of editing commands we would see screen
displays:

A>_
(F3)

A>COPY A:FOO.BAR B:_
(twelve backspaces)

A>COPY _
(INS C: INS)

A>COPY C:_
(two F1s)

A>COPY C:A:_
(F2R)

A>COPY C:A:FOO.BA_
(eight backspaces)

A>COPY C:_
(F4<space> INS NIFTY.COM INS)

A>COPY C:NIFTY.COM_
(F3)

A>COPY C:NIFTY.COM B:_

We also discussed the text editor program EDLIN.  We discussed the
commands

line1,line2D      delete lines
line              edit line
E                 end and save
lineI             insert line
line1,line2L      list lines
Q                 end and don't save

A line number consists of a number from 1 to 65536, or else the symbols
"." (meaning the current line) or "#" (meaning the line after the last
line in the file).

Intel 8088 CPU Registers

Generally (though not always) when we program in a high-level
language we think in terms of the following types of constructs:

CONSTANTS           numerical, string, or some other
quantities whose unchanging actual
values are known when the program
written

VARIABLES           quantities (whose initial values
may or may not be known) whose
values change as the program
executes

PROCEDURES          functions or subroutines which
may or may not have arguments and
may or may not return answers
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None of these items has any real direct equivalent in terms of assembly
language.  Each, in practice, is a combination of several assembly
language features.

In assembly language, on the other hand, much thought goes into
the use of the computer's memory (considered as a sequence of bytes or
words) and the CPU's registers.  A register is like a memory location
in that it can store a byte (or word) value.  [These register sizes
apply to CPUs like the 8088, 8086, 8080, Z80, etc.  The 68000 CPU has
all 4-byte registers.  The Z8000 CPU has registers that can be grouped
in various ways to contain anything from one byte to 8 bytes.  Some TI
microprocessors have no registers at all.]  However, a register has no
address in the computer's memory.  Registers are not a part of the
computer's memory, but are built into the CPU itself.

Registers are so important in assembly language programming (on
microcomputers) for various reasons.  First, the variety of
instructions using registers tends to be greater than that for
operating on values stored at memory locations.  Second, these
instructions tend to be shorter (i.e., take up less room to store in
memory).  Third, register-oriented instructions operate faster than
memory-oriented instructions since the computer hardware can access a
register much faster than a memory location.

The 8086-family of microprocessors have a number of registers, all
of which are partially or totally dedicated to some specific type of
use.  Here is a list of the registers and their uses.  Do not worry if
their uses do not seem clear yet.  For the present, it suffices for us
that the italicized registers are so specialized that they can only be
used for their special purpose, while the registers in normal type can
often be used just like 16-bit (word) memory locations:

AX   The accumulator
BX   The pointer register
CX   The loop counter
DX   Used for multiplication and division
SI   The "source" string index register
DI   The "destination" string index register
BP   Used for passing arguments on the stack
SP   The stack pointer
IP   The instruction pointer
CS   The "code segment" register
DS   The "data segment" register
SS   The "stack segment" register
ES   The "extra segment" register
FLAG The flag register

The first seven registers might reasonably be called "general purpose"
registers since they can be used rather flexibly to manipulate word
values until (or unless) their special functions are needed.  AX, BX,
CX, and DX are more flexible than the others in that they may be used
either as word registers (containing 16-bit values) or as pairs of byte
registers (containing 8-bit values).  The byte-sized registers gotten
this way are known as AL, BL, CL, DL, AH, BH, CH, and DH.  For example,
AL contains the less significant byte of AX, while AH contains the more
significant byte.
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Several of these special register types are common among
microprocessors:

The accumulator is often a special register which is designated to
contain the results of certain arithmetic operations.  Many
instructions execute faster when operating on the accumulator then they
do when operating on other registers, which are in turn faster than
operations on memory variables.  The 8088 has the 8-bit accumulator AL
and the 16-bit accumulator AX.

The instruction pointer (or program counter) is a register
controlling the execution of programs.  Recall that both programs and
data are stored in the computer's memory.  Most program code is stored
in memory in such a way that sequentially executed instructions are
actually stored sequentially in memory.  The IP (instruction pointer)
register contains the address of the next instruction to be executed.
For every instruction fetched from memory, the IP is automatically
incremented by the number of bytes in the instruction.

The stack pointer (SP) contains the address of the next memory
location to the added to the stack.  We will discuss stacks later.

The flag register contains a number of bit-sized "flags"
describing the status and configuration of the CPU.  Its main use is in
controlling conditional execution of parts of a program.

ASSIGNMENT:  Read and do the problems for Chapter 1 in the book.

Memory Usage

As mentioned before, the 8088 microprocessor can address up to 1
megabyte of memory.  "Mega" is a prefix that means "million", so we
would expect that a megabyte of memory would represent one million
memory locations, each capable of storing one byte.  This is almost
correct, except that in computing "mega" refers to 220=1,048,576.
(Similarly "kilo", which normally means "thousand", means 210=1024 in
computing.)  Thus, the 8088 address space contains 1,048,576 locations,
each (in theory -- i.e., if the appropriate hardware memory devices are
actually installed in the system) capable of storing one byte.  Thus,
memory addresses range from 0 to 1048575 in decimal, or 0 to FFFFF in
hexadecimal.

Memory locations can also be ganged in pairs to store words (16-
bit or two-byte values) or in quadruplets to store doublewords (4-byte
values).  There are additional groupings that we will encounter when
studying the 8087 numeric coprocessor chip which can be optionally
installed in the IBM PC.  Unlike many processors, which require word
and doubleword values to be stored at even addresses, the 8088 allows
any size of variable to be stored at any address.  However, when 8088
programs are run on the software-compatible 8086 microprocessor (or the
80186 or 80286) word and doubleword variables stored at odd addresses
can result in a loss of efficiency (i.e., execution speed).

Note that although the address space of the 8088 is one megabyte
in size, we will assume for the present that it is only 64K in size.
This is due to limitations of the 8088 processor which we will learn
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about in much greater detail later.  Thus, for the present, we will
assume that all addresses are 16 bits (words) in size, and that they
vary from 0 to FFFF (hex).

In assembler, memory space for variables is usually allocated with
the DB, DW, and DD operators.  These operators associate a type (i.e.,
byte, word, or doubleword) with each variable, and (optionally) assigns
a name and an initial value as well.  The operators are not
instructions for the CPU to execute; rather they inform the assembler
program (MASM) that you intend to symbolically refer to certain memory
locations in certain ways.  After the source code is assembled, the
object code contains only references to real memory addresses and no
trace of the original symbolic names exists.

Here is a sample of how variables are declared in 8088 assembly
language.  Suppose that we want to create a byte-sized variable called
"FOO" with the initial value 27 (decimal), a word-sized variable called
"BAR" with the initial value of 3E1 (hexadecimal), and a doubleword
variable called "REAL_FAT_RAT" whose initial value we don't care about.
Here is one way of doing this:  in our assembly language program we
include the lines

foo db 27           ; by default all numbers are decimal
bar dw 3e1h         ; appending an "h" means hexadecimal
real_fat_rat dd ?   ; "?" means "don't care about the value"

A variable name thus refers to the value stored at a particular (and
unchanging) address.  While the value of the variable may change (that
is, the value stored at the memory location), the address of the
variable never changes.

The MOV Instruction

Recall that in the first class we saw a simple example of an
assembly language program for averaging together the elements of an
integer array.  We didn't understand too well at that time what the
program did, but one thing that may have been apparent was that out of
the ten instructions in the program, five were of the form "mov
something,somthing".  The "MOV" instruction is the most important
(i.e., most frequently used) instruction in 8088 assembly language and
hence is the first 8088 instruction we will learn about.  The MOV
instruction has the format

MOV destination,source

and allows you to MOVe data into or out of registers or memory
locations.  "Destination" specifies where the data is moved to and
"source" specifies where the data is moved from.

In general, the destination can be either a register or a memory
location.  The source can also be either a register or a memory
location, except that memory-to-memory transfers are not allowed.  The
source can, in addition, be simply a numeric value.  Thus, for example,
we could load a register with the value 5, or we could load it with the
value from the address 5.  While the MOV instruction modifies that
value stored in the destination, the source is not changed in any way.
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Registers are referred to by the register names listed above (AX,
BX, etc.), while memory variables may be referred to by their symbolic
names.  (Memory locations may also be referred to in a number of other
complicated ways, but we will discuss these later.)  Here are some
examples of MOV instructions, using the variables FOO, BAR, and
REAL_FAT_RAT defined earlier:

mov ax,bar     ; load the word-size register ax with
; the word value stored at location bar.

mov dl,foo     ; load the byte-size register dl with
; the byte value stored at location foo.

mov bx,ax      ; load the word-size register bx with
; the bype value in ax.

mov bl,ch      ; load the byte-size register bl with
; the byte value in ch.

mov bar,si     ; store the value in the word-size
; register si at the memory location
; labelled "bar".

mov foo,dh     ; store the byte value in the register
; dh at memory location foo.

mov ax,5       ; store the word 5 in the ax register.
mov al,5       ; store the byte 5 in the al register.
mov bar,5      ; store the word 5 at location bar.
mov foo,5      ; store the byte 5 at location foo.

Notice that the size of the source and destination (i.e., byte or word)
must match in register-to-register, memory-to-register, or register-to-
memory transfers.  In immediate transfers (in which a constant value is
directly stored into the destination), the constant value must be
consistent with the size of the destination.  In the example above, 5
could be either a byte or a word value; if, however, we had used the
value 3172, this could only represent a word (not a byte), so

mov al,3172
mov foo,3172

are illegal.

A Simple Sample Program Fragment

Let us now consider our first fully understandable fragment of
8088 programming.  Suppose that we have 4 word-sized values stored in
the variables MY, NAME, IS, NOBODY, (storing, say, the initial values
4, 5, 6, and 32) and that we want to move these values to the variables
PLAY, MISTY, FOR, ME.  In FORTRAN this would be easy.  We would have
something like this:
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INTEGER*2 MY,NAME,IS,NOBODY,PLAY,MISTY,FOR,ME
DATA MY,NAME,IS,NOBODY/4,5,6,32/

.

.

.
PLAY=MY
MISTY=NAME
FOR=IS
ME=NOBODY

.

.

.

In assembler, on the other hand, we are slightly hampered by the
lack of a memory-to-memory version of the MOV instruction.  In order to
overcome this problem we will do the memory-to-memory move in two
steps:  first, we will move the value from memory to one of the
general-purpose registers of the CPU (say, AX), and then move the value
from the register back into memory.  Our program fragment might look
like this:

; destination variables
play    db ?
misty   db ?
for     db ?
me      db ?
; source variables
my      db 4
name    db 5
is      db 6
nobody  db 32

.

.

.

mov ax,my ; PLAY=MY
mov play,ax
mov ax,name ; MISTY=NAME
mov misty,ax
mov ax,is ; FOR=IS
mov for,ax
mov ax,nobody ; ME=NOBODY
mov me,ax

This program actually works, as we will see below.

DEBUG

Our programs will mainly be developed as described so many times
earlier, using EDLIN to create the source code, MASM to assemble it,
and LINK to link it.  Our very first programs, however, will be written
instead using a program called DEBUG.  The reason for this is that with
DEBUG we can concentrate our thoughts purely on assembly language; with
MASM, on the other hand, (as we will see later) we need to do a number
of things that have nothing to do with assembly language in order to
get our programs to work.
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DEBUG is the system "debugger".  It has its own built-in editor
and primitive assembler, and its code does not need to be linked.
Debug also has facilities for modifying memory locations and for
examining memory locations.  Because of this, we can develop and run
simple programs entirely inside of the DEBUG program, much more
conveniently than we can with the EDLIN-MASM-LINK cycle.

DEBUG cannot be used to conveniently develop larger programs,
however, because (among other things) it does not allow the use of
symbolic labels.  With DEBUG, one must literally know the memory
addresses of all data items.  In DEBUG, an (immediate) value is
distinguished from the value stored at an address in that an address is
enclosed in square brackets.  For example, DEBUG accepts

mov ax,200

as meaning "load ax with the value 200", while is accepts

mov ax,[200]

as meaning "load ax with the value at address 200".  DEBUG also differs
from the macro assembler (MASM) in that the default base for numbers is
hexadecimal rather than decimal.  Thus the "200" used above is really
hexadecimal 200, or 512 decimal.

In the "My Name is Nobody" example used earlier we might (if we
were using DEBUG) define (in our own minds) the byte variables MY,
NAME, IS, NOBODY, PLAY, MISTY, FOR, and ME to reside at memory
locations 200 (hex) through 207.  In that case, our program fragment
would become

mov ax,[200] ; PLAY=MY
mov [204],ax
mov ax,[201] ; MISTY=NAME
mov [205],ax
mov ax,[202] ; FOR=IS
mov [206],ax
mov ax,[203] ; ME=NOBODY
mov [207],ax

although the comments would be deleted since the debugger is incapable
of remembering them.

Let's see how we might run such a program from within DEBUG.
First, DEBUG may be run by typing "DEBUG<cr>" from MS-DOS command mode.
After DEBUG loads from the disk and begins executing, you will see the
prompt "-".  This means that you must now enter DEBUG commands rather
than DOS commands.

The most important DEBUG command is "Q", or "quit".  Entering
"Q<cr>" (without the quotes, of course) at the "-" prompt returns you
to DOS command mode.

Our little program may be entered with the "A" or "assemble"
command.  Let "nnnn" represent any address.  If you type "Annnn<cr>" at
the "-" prompt, DEBUG will enter an input mode in which you can type in
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assembly language instructions.  These instructions are then
immediately assembled into a program, with the first instruction you
type beginning at address nnnn.  For reasons we will learn about later,
many programs begin at location 100 (hex).  Therefore, we can get our
program into the computer by typing "A100<cr>" and then entering in the
lines of our program one by one.  Entering a blank line terminates this
process.  That is, when the program is entirely entered, you just type
an extra carriage return to get out of input mode.

We can check that the program is actually in the computer at
address 100 with the "U" or "unassemble" command.  Entering "Unnnn<cr>"
at the "-" prompt unassembles the program.  That is, it looks at the
bytes stored in memory beginning at location nnnn and deduces the
assembler instructions you must have typed in.  For example, "U100<cr>"
would verify our program.

Here is what it looks like to use DEBUG as described above, with
our input underlined and the computer's output in normal type:

-a100
48EE:0100 mov ax,[200]
48EE:0103 mov [204],ax
48EE:0106 mov ax,[201]
48EE:0109 mov [205],ax
48EE:010C mov ax,[202]
48EE:010F mov [206],ax
48EE:0112 mov ax,[203]
48EE:0115 mov [207],ax
48EE:0118
-u100
48EE:0100 A10002        MOV     AX,[0200]
48EE:0103 A30402        MOV     [0204],AX
48EE:0106 A10102        MOV     AX,[0201]
48EE:0109 A30502        MOV     [0205],AX
48EE:010C A10202        MOV     AX,[0202]
48EE:010F A30602        MOV     [0206],AX
48EE:0112 A10302        MOV     AX,[0203]
48EE:0115 A30702        MOV     [0207],AX
48EE:0118 48            DEC     AX
48EE:0119 023C          ADD     BH,[SI]
48EE:011B 17            POP     SS
48EE:011C 7301          JNB     011F
48EE:011E C3            RET
48EE:011F E87600        CALL    0198

The "48EE:" should be ignored for the present.  It has to do with the
fact that the address space is 1M in size but that we are assuming it
to be 64K in size.  (If you try this, you will probably get a different
number than 48EE.)  The 4-digit hexadecimal numbers following the
"48EE:" represent the addresses we are using.  Notice that in the
unassembly the program continues (beginning at address 118) past the
point at which we stopped typing in instructions.  This is because the
DEBUG program does not know or care where your program begins or ends.
It is perfectly willing to interpret any garbage hanging around in
memory (such as fragments of previously run programs) as valid
instructions.  Moreover, if you are not careful, it is perfectly
willing to execute them.  If you don't want to see these extra garbage
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instructions, the "U" command is willing to have you specify an ending
address as well as a beginning address for the unassembly.  Thus, in
this case, "U100,118<cr>" would list just the instructions we typed in.

Another inconvenient aspect of DEBUG is that if you make any
mistakes entering the program, it is likely that you will have to type
in the entire program again, from the point of the mistake.  For
example, if we had accidentally entered the instruction "mov ax,dx" at
address 106, we would have to use the command "A106<cr>" to re-enter
all of the statements from "mov ax,[201]" on.  The reason we could not
simply correct the single bad statment is that different 8088
instructions assemble down to strings of bytes of different lengths.
Thus, unless the correct and incorrect statements assemble to the same
length, either the correct instruction will overlap the succeeding
instructions in memory or else will leave a garbage-filled gap between
itself and the next instruction.  We will see ways later of partially
getting around this fact in some simple cases, but there is no
generally applicable fix other than re-typing the program.

In any case, before we can run this program we must initialize the
variables MY, NAME, IS, and NOBODY (which is to say, the values stored
at memory locations 200 through 203).  The can be done with the "E" or
"enter" instruction.  This command allows you to enter hexadecimal
values rather than 8088 instructions into memory locations.  If you
type "Ennnn<cr>", DEBUG will go into an input mode in which you can
sequentially enter values into the memory locations beginning at
address nnnn.  You can enter as many bytes (in hexadecimal) as you
wish, with the bytes separated by spaces.  A carriage return terminates
input mode.  As you enter the new values of the bytes, DEBUG
thoughtfully displays the old values for you, on the grounds that you
might not want to change them.  If you want to leave a particular byte
unchanged, you can simply hit the space bar (without entering a hex
value) to go to the next memory location.  In our example, to
initialize locations 200-203 with 4, 5, 6, and 32 (20 in hexadecimal),
we could do this:

-e200
419F:0200  77.4   20.5   64.6   69.20

Here, the "419F:" is to be ignored as above, and 77, 20, 64, and 69 are
the original values stored at addresses 200-203.

[It is also possible to use the DB and DW operators to define
these initial values:  i.e.,

-a200
419F:200 db 4
419F:201 db 5
419F:202 db 6
419F:203 db 20

However, this involves some tricky aspects that we will understand
better later, so it is best to avoid this method (for now) when using
DEBUG.]

We can check to see if this worked as we expected by using the "D"
or "display" command.  Typing "Dnnnn<cr>" at the "-" prompt displays in
hexadecimal the values at the bytes beginning at address nnnn.  Another
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form of this command is "Dnnnn,mmmm<cr>", which displays all bytes
between addresses nnnn and mmmm, inclusive.  For example, using this
command we might now see:

-d200,207
419F:0200  04 05 06 20 72 65 63 74   ... rect

Here, the "04" through "74" are the hexadecimal forms of the bytes at
addresses 200 through 207.  The "." through "t" on the right-hand side
are the "ASCII" forms of these bytes.  If you don't know what this
means, don't worry; we'll learn more about it later.

At this point, we are actually ready to run our program.  This is
done with the "G" or "go" command.  Typing "G=nnnn,mmmm<cr>" runs the
program beginning at address nnnn, stopping when it should execute the
instruction stored at address mmmm.  In our case, for example, the
program begins at address 100, and the first instruction we don't want
to be executed is at 118.  Thus we can run the program with the command
"G=100,118<cr>".  Since the object of the program is to modify the
memory locations 204 through 207, we can check to see if the program
worked by examining those memory locations to see if they hold the
correct values:

-d200,207
419F:0200  04 05 06 20 04 05 06 20   ... ...

Apparently the program works!

DEBUG has many other commands, but for now we will learn about
just one other command, the "R" or "register" command.  "R" may be used
either to examine or to modify the 8088's registers.  For example, type
"R<cr>" displays the contents of all registers, as well as the value on
top of the stack and the hexadecimal values and unassembly at the
address stored in the instruction pointer (IP) register:

-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=4410 ES=4410 SS=4410 CS=4410 IP=0100 NV UP DI PL NZ NA PO NC
4410:0100 005B9F    ADD     [BP+DI-61],BL            SS:FF9F=E8

In order to modify a register value, we type "Rrn<cr>", where "rn" is
the name of a register (AX, BX, etc.).  Then debug prompts for a new
value to store in the register.  For instance, to store 4567 (hex) in
the CX register (which, from the display above is presently set to 0),
we do:

-rcx
CX 0000
:4567

Such assignments can, of course, be easily checked with "R<cr>".
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QUICK REFERENCE:  MS-DOS, EDLIN, AND DEBUG

MS-DOS:  FUNCTION KEYS
->   move right F3   move to end of line
<-   move left ESC  move to beginning
F2x  move right to character x INS  toggle into/out of
DEL  delete character      insert mode
F4x  delete to character x F5   create new template

MS-DOS:  COMMANDS
d:  Change default drive to drive d:.
CLS  Clear the screen.
COPY source [destination] [/V]  Copy the source file to the

specified destination.  "Verify" the copy if "/V" is
present.  The destination can be a file or a disk drive.
If the destination is absent, copy to default drive.

DEBUG  Run the system debugging utility.
DIR [d:]  Display the directory of drive d: (or default

drive if absent).
EDLIN destination  Edit the specified file.
ERASE destination  Erase the specified file.
DISKCOPY s: d: [/V]  Copy the entire disk in drive s: to

drive d:.  (This erases the disk in drive d:.)
FORMAT d: /V  Format (erase) the disk in drive d:.
LINK  Run the system linker.
MASM  Run the Macro Assembler.
RENAME source destination  Renames the source file using the

destination name.
TYPE source  Display the contents of the specified file.

NOTE:  Above, bracketed quantities are optional.  Source and
destination are filenames (unless specified), and s: and
d: are disk-drive names.]

THE TEXT EDITOR, EDLIN
start,endD  Delete the specified range of lines.
line  Edit the specified line.
E  End the editing session and save the text.
lineI  Enter insert mode just prior to the specified line.
start,endL  List the specified range of lines on screen.
Q  End the editing session but do not save the text.
start,end[?]Rstring1F6string2  Replace (with prompting

if ? is present) all occurrences of string1 with
string2 in the specified range of lines.

start,endSstring  Search the specified range of lines
for an occurrence of the string.

NOTE:  Above, start, end, and line refer to line-
numbers.  String1, string2, and string refer to strings.
A "line number" can be either an actual number or the
symbols "." (the current line) or "#" (the end of the text).
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DEBUG, THE SYSTEM DEBUGGING UTILITY
Astart  Input assembly language at the specified address.
Dstart,end  "Dump" (in hex) the specified address range.
Estart  Input (in hex) byte values at the specified address.
G=start,end  Execute the program in this address range.
Q  Quit and return to DOS.
R[register]  Display the values of all registers or else

modify the specified register.
Ustart,end  Unassemble the specified locations in memory.

NOTE:  Above, start and end refer to addresses.
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RUNNING OUR PROGRAM WITH DEBUG

ENTERING THE PROGRAM

-a100
48EE:0100 mov ax,[200]
48EE:0103 mov [204],ax
48EE:0106 mov ax,[201]
48EE:0109 mov [205],ax
48EE:010C mov ax,[202]
48EE:010F mov [206],ax
48EE:0112 mov ax,[203]
48EE:0115 mov [207],ax
48EE:0118

CHECKING THE PROGRAM

-u100
48EE:0100 A10002        MOV     AX,[0200]
48EE:0103 A30402        MOV     [0204],AX
48EE:0106 A10102        MOV     AX,[0201]
48EE:0109 A30502        MOV     [0205],AX
48EE:010C A10202        MOV     AX,[0202]
48EE:010F A30602        MOV     [0206],AX
48EE:0112 A10302        MOV     AX,[0203]
48EE:0115 A30702        MOV     [0207],AX
48EE:0118 48            DEC     AX
48EE:0119 023C          ADD     BH,[SI]
48EE:011B 17            POP     SS
48EE:011C 7301          JNB     011F
48EE:011E C3            RET
48EE:011F E87600        CALL    0198

ENTERING THE DATA

-e200
419F:0200  77.4   20.5   64.6   69.20

CHECKING THE DATA

-d200,207
419F:0200  04 05 06 20 72 65 63 74   ... rect

RUNNING THE PROGRAM

-G=100,118

CHECKING THE RESULTS

-d200,207
419F:0200  04 05 06 20 04 05 06 20   ... ...
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CLASS 3

Comments

1.  On closer examination, the office hours 12-7 do seem a little
extravagent.  Therefore, my office hours will officially be Monday-
Thursday, 3:00-7:00.  However, I am usually here from noon (unless I go
to lunch) and you are free to come any time you want to.

2.  I'd like to comment on a couple of the points brought out in the
"essays" I received as a result of the first assignment.  First,
Manning Grinnan tells us that the text editor called "PC-Write" is
rather good and can be legally copied.  If this is true, you can obtain
a copy of PC-Write from him and use it rather than EDLIN (if you want
to).  Second, I mentioned last time that the 8088 family of
microprocessors was introduced in 1978 and hence is rather ancient as
far as the microcomputing world is concerned.  This has led some of you
to conclude that these processors are on their way out and that there
would consequently be few job opportunities for 8088 assembly language
programmers.  Simple arithmetic, however, shows the opposite.  At the
present time, there is an installed base of nearly 2 million IBM PCs
and XTs.  This does not include the IBM ATs, or compatibles like Compaq
or TI Professionals.  It is likely that IBM will discontinue this line
in the next year or two, but the 2 million already-installed PCs will
not disappear for many years.  Moreover, the machines which are
expected to replace the PCs are machines like the IBM AT.  The AT,
though much faster than a PC, is compatible at the assembly-language
level.  Thus, there is likely to be a demand for IBM PC assembly
language programmers for a number of years.

Review

In the last class we had our first real excursion into assembly
language programming.  In order to write and run a simple program, we:

Learned about the registers of the 8088.  These registers, AX, BX,
CX, DX, SI, DI, BP, etc., are all 16 bits in size, except that AX-DX
can be considered to be 8 byte-sized registers called AL-DL and AH-DH.
All of the registers have specialized functions, but AX-DX are commonly
used for most data manipulations.  AX is the 16-bit accumulator and AL
is the 8-bit accumulator.

We learned about how to define "variables" in assembly language
using the DB, DW, and DD operators.  These operators allow us to
symbolically refer to a variable by means of a name, and they give the
variables types -- i.e., byte, word, or doubleword.  They are also
optionally capable of giving variables initial values.  If we use the
DEBUG program, however, which has its own built-in assembler, we cannot
use such symbolic names.  We must instead know the specific numerical
address at which a variable is stored in memory.

We learned about the MOV instruction of the 8088 microprocessor.
The instruction
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MOV destination,source

copies the data specifies by the source operand into the location
specified by the destination operand.  The destination and source can
be either registers or memory locations, except that no memory-to-
memory transfers are allowed.  Moreover, the source operand can (in
addition to registers and memory locations) be an immediate value.

We then wrote a short program which defined a number of byte-sized
variables MY, NAME, IS, NOBODY, PLAY, MISTY, FOR, and ME.  The first
four of these were initialized to some known values (4, 5, 6, and 32)
and the program copied these values to the second set of four
variables.

We learned how to use the utility program DEBUG to run this
program.  In DEBUG, our program could be used just as written except
that we had to use actual addresses for the variables rather than
symbolic names.  We stored our variables at locations 200 (hex) through
207.  In DEBUG, we had to use expressions like [200], [201], etc.
rather than MY, NAME, etc.  We discussed the DEBUG commands

Aaddress          Input assembly language at the
specified address.

Ustart,end        Display the assembly instructions
stored in the specified address
range.

Eaddress          Enter hexadecimal values to be stored
beginning at the specified address.

Dstart,end        Display a hexadecimal "dump" of the
bytes stored in the indicated range.

G=start,end       Execute the program beginning at the
start address.  The end address is
the address of the first instruction
not executed.

R[register]       Display the contents of (and
optionally change) the contents of
the registers.

More DEBUG Instructions

The DEBUG program works essentially with the assembled (i.e.,
executable) forms of programs.  Even though you can type in assembly
language instructions at the keyboard and get listings of the assembly
language instructions stored in memory, DEBUG does not store or
remember your source code.  For example, if you enter the assembly
language instruction

MOV AX,[200]

then DEBUG will instantly assemble this (producing the bytes A1, 00,
and 02, incidentally) and store these bytes in memory.  The original
string of characters, "MOV AX,[200]", is completely lost.  For the "U"
DEBUG command, which lists the assembly language code at a given
address, DEBUG actually looks at the bytes stored in memory (the A1,
00, and 02) and deduces the assembly language instructions that must
have been typed in.
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It is possible with DEBUG to store your program on the disk or to
read from disk a program which is already there.  However, since DEBUG
really only recognizes executable code, it can only read or write files
of executable code.  It cannot, for example, read (and assemble)
assembly language source code, nor can it save your program as a text
file containing assembly language.  [Actually, there are some MS-DOS
tricks that can enable you to do these things, but they are not worth
the effort.]

Saving a file with DEBUG is a slightly complex procedure.  Loading
a file from disk is somewhat easier.  The first step in both is to
inform DEBUG of the name of the file.  This is done with the "N", or
"name", command.  This command has the syntax

Nfilename

Almost all files containing executable code have one of the following
filename extensions:  ".COM", ".EXE", or ".BIN".  A program can be
loaded into memory with the "L" command, which has the syntax

L[address]

The address at which the program is to be loaded can be (optionally)
specified.  If not, the program is loaded at address 100 (hex).  In all
file operations with DEBUG, the BX and CX registers are used together
as a doubleword variable containing the number of bytes in the program.
CX is the least significant word and BX (usually zero) is the most
significant word.  Therefore, after the file is loaded, DEBUG
thoughtfully fixes these registers to contain a byte count.  In any
case, once the file is loaded, you may now examine or modify it using
any of the DEBUG operations.

In order to save a file, as above you must use the "N" command to
define the filename.  (However, if you first loaded the file as
described above, you don't need to use the "N" command again unless you
want to change to a different filename.)  You must also load the BX and
CX registers with the byte count to be saved.  This is done with the
"R" command.  For example, if your program was 200 (hex) bytes long,
you would use "RBX" to load BX with zero and "RCX" to load CX with 200.
Finally, the file can be saved with the "W" or "write" command.  The
syntax for this is

W[address]

where, as before, the starting address of the code to be saved is by
default 100 but can optionally be explicitly entered.

Arithmetic Instructions

It is gratifying that our little program worked (though full of
errors), but unfortunately it doesn't do anything very interesting.
Let us therefore learn about some more 8088 instructions.  In this
section, we will learn about some of the integer arithmetic operations,
namely addition and subtraction.  Integer multiplication and division
instructions are also available, but we will discuss them later.
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First we will consider the ADD and SUB instructions.  These
arithmetic instructions are quite similar to the MOV instruction in
some ways.  Like the MOV instruction, the general form of the add and
subtract instructions is

mnemonic destination,source

In assembly language, a "mnemonic" is the symbolic name for a CPU
instruction.  For example, "MOV" is the mnemonic for the MOV
instruction.  For addition and subtraction the mnemonics are "ADD" and
"SUB".  Thus, an add instruction looks like

ADD destination,source

and a subtract instruction looks like

SUB destination,source

The ADD (SUB) instruction adds (subtracts) the value of the source
operand to (from) the value of the destination operand, and stores the
result in the destination.  As with the MOV instruction, the source and
the destination operands can be any combination of registers or memory
variables, except that no memory-to-memory operations are allowed.
Also, the source operand can be an immediate value rather than a
register or memory variable.  Also, as before, the sizes of the source
and destination operands must match -- that is, they must both be bytes
or both be words.

Here are some samples of valid additions and subtractions:

add dx,dx      ; add the DX register to itself.
add cx,5       ; add the value 5 to the cx reg.
add si,di      ; add the di register to si reg.
add bl,cl      ; add cl reg. to bl. reg.
add foo,5      ; add the value 5 to the

; variable foo.
add foo,al     ; add contents of al to foo.
sub bar,5      ; subtract word value 5 from bar
sub bar,3e1h   ; subtract 3e1h from variable bar
sub al,foo     ; subtract value of var. foo from al
sub si,ax      ; subtract contents of ax from si

Combinations such as

add cl,3e1h
add cl,bx
sub foo,cx

are illegal since the source and destination operands have incompatible
sizes.  (In each case listed, the destination is byte-sized and the
source is word-sized.)

Recall our earlier sample program to copy the variables MY, NAME,
IS, and NOBODY to the variables PLAY, MISTY, FOR, and ME.  If, instead,
we wanted to do the equivalent of
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PLAY=MY+1
MISTY=NAME-1
FOR=IS+1
ME=NOBODY-1

we could modify our program in several ways to accomplish this.  For
example, we could simply copy the variables just as before, and then
add or subtract one from the appropriate memory locations:

mov ax,my ; PLAY=MY
mov play,ax
mov ax,name ; MISTY=NAME
mov misty,ax
mov ax,is ; FOR=IS
mov for,ax
mov ax,nobody ; ME=NOBODY
mov me,ax
add play,1 ; PLAY=PLAY+1
sub misty,1 ; MISTY=MISTY-1

[or:    add misty,-1]
add for,1 ; FOR=FOR+1
sub me,1 ; ME=ME-1

Another possiblity is that since each value must pass through the
intermediate register AX in this program, we could perform the
additions or subtractions "on the fly":

mov ax,my ; get MY into ax,
add ax,1  ; increment it,
mov play,ax ; and save it as PLAY.
mov ax,name ; similarly for MISTY=NAME-1
sub ax,1
mov misty,ax
mov ax,is ; similarly for FOR=IS+1
add ax,1
mov for,ax
mov ax,nobody ; similarly for ME=NOBODY-1
sub ax,1
mov me,ax

The latter approach is superior in that the assembled code is both
smaller and executes faster then the former.  We will find out later
how to calculate such things, but for now we will note that

Clock     Assembled
Instruction                 Cycles       Size
MOV AX,memory                 14           3
MOV memory,AX                 14           3
ADD memory,immediate          31           6
SUB memory,immediate          31           6
ADD AX,immediate               4           3
SUB AX,immediate               4           3

where a "clock cycle" is a unit of time approximately equal to 210
nanoseconds.  A nanosecond is one billionth of a second.  Thus the
first program fragment executes in 236 clock cycles (about 50
microseconds) and uses 48 bytes when assembled, while the second
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executes in 128 clock cycles (about 26 microseconds) and uses 36 bytes
of memory.

Indeed, we can improve this slightly by using the "increment" and
"decrement" instructions.  These instructions have the form

INC destination

and

DEC destination

where the destination operand is a byte or word register or memory
variable.  INC adds one to the destination, while DEC subtracts one.
Thus these instructions are functionally equivalent to

ADD destination,1

and

SUB destination,1

However, the increment and decrement instructions are actually smaller
and execute more quickly.  Thus, the following fragment is superior to
both of the above:

mov ax,my ; get MY into ax,
inc ax  ; increment it,
mov play,ax ; and save it as PLAY.
mov ax,name ; similarly for MISTY=NAME-1
dec ax
mov misty,ax
mov ax,is ; similarly for FOR=IS+1
inc ax
mov for,ax
mov ax,nobody ; similarly for ME=NOBODY-1
dec ax
mov me,ax

Actually, I was exagerating slightly when I stated that the
increment and decrement instructions were functionally equivalent to
the instructions that immediately subtract or add one.  There is, in
fact, one difference between (for example) ADD destination,1 and INC
destination.  This difference is the effect on the carry flag.  We will
discuss the so-called "flags" in the next section; for now, just think
of the carry flag as a bit-sized register located somewhere in the CPU.
As is happens, ADD and SUB instructions may modify the carry flag, but
INC and DEC instructions do not.

What is the carry flag used for?

It can happen in integer addition that the result of an addition
is too big for the destination address to hold.  For example, if we
have the word-values 8000H and 8001H stored in some word-sized source
or destination the sum, 10001H, is 17 bits long and hence too large to
store in the destination.  It is easy to show that this in fact
represents the worst possible case:  that is, the result of a 16-bit
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addition can never be more than 17 bits long.  Similarly, the result of
an 8-bit addition can never be more than 9 bits long.  Thus, in
practice, what the CPU does is to go ahead and store the 16 least
significant bits of the result at the destination (or 8 least
significant bits for a byte operation), and the store the significant
17th  (9th) bit as the one-bit carry flag.  This is very similar to
what happens in pencil-and-paper addition.  In adding (for instance)
the numbers 7 and 8 on paper, we would "store" the least significant
digit of the sum, 5, as part of the result, and would "carry" the most
significant digit, 1.

Similarly, in subtraction with pencil and paper, we sometimes need
to subtract a larger digit from a smaller digit.  To do this, we
"borrow" from the next higher digit.  This "borrowed" digit is always
zero or one, just like a carried digit.

In fact, the carry flag is used to store both carries and borrows
in integer addition and subtraction.  We will illustrate this point
with 8-bit addition.  Suppose that the registers AL, BL, and CL contain
the (decimal) numbers 200, 195, and 25, respectively:

MOV AL,200
MOV BL,195
MOV CL,25

In the addition

ADD AL,BL

we would have the result 395, which is too big to store in the AL
register.  Thus, the carry flag would be "set" to one, and the result
would be truncated to 8 bits:  i.e., AL would contain 139.  On the
other hand, in the addition

ADD AL,CL

the result, 225 (<256) is byte sized, so we would find that AL contains
225 and the carry flag is "cleared" to zero.  In the subtraction

SUB AL,BL

we are subtracting a smaller number from a bigger number, so AL
register contains the result, 5, and the carry flag (which stores the
"borrow") is cleared.  In the subtraction

SUB BL,AL

however, we are subtracting a larger number from a smaller one, so the
carry flag is set (indicating that a borrow has occurred).  The result
finally stored in BL is gotten by subtracting AL from BL plus 256, or
251.  This is, of course, very similar to the way borrowing works with
pencil and paper.

The carry flag is often used to check for overflow in integer
operations.  Another common use is in multiple-precision arithmetic.
Since the 8088 has instructions for manipulating only byte (INTEGER*1)
and word (INTEGER*2) values, it is necessary to write programs to deal
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with arithmetic of higher precision:  for example, doubleword
(INTEGER*4) arithmetic.  To see the problems involved, let's see what
we have to do to perform word arithmetic using only byte operations.
For example, let's suppose we want to perform the equivalent of the
operation

MOV AX,3E1H
MOV BX,736H
ADD AX,BX

using only byte additions.  We cannot simply replace the "ADD AX,BX"
instruction with the instructions

ADD AL,BL
ADD AH,BH

This is evident from the fact that this gives us the wrong answer:
3E1+736=B27, but the latter instruction sequence gives us A27 instead.
What has happened is that the addition of the least significant bytes
(ADD AL,BL) overflowed and generated a carry.  As in pencil-and-paper
addition, where the carry is added in when we go to the next column, we
needed to add the carry to the sum AH+BH.  Thus, since we did not do
this, the most significant byte of our result was one too small.  We
would have had similar problems in performing a subtraction.

Fortunately, we can take care of this problem by using the "add
with carry" and "subtract with borrow" instructions of the 8088.  These
have the syntax

ADC destination,source

and

SBB destination,source

and are exactly like ADD and SUB except that ADC automatically adds in
the carry left over from previous operations, and SBB automatically
subtracts the borrow.  In the example we are using, if we replaced "ADD
AX,BX" by

ADD AL,BL
ADC AH,BH

we would find that our result was now correct since the carry is taken
account of.  This idea can be extended to higher precision arithmetic:
The least significant bytes (or words) are ADDed, and all higher bytes
(words) are ADCed.  Similarly, in subtraction, the least significant
bytes (words) are SUBed, and all higher bytes (words) are SBBed.

Let us write a short sample program illustrating this by
performing an INTEGER*8 addition on two variables stored in memory,
placing the result in a third variable.  There is no "define data"
operator for declaring INTEGER*8 variables, so we will declare our
variables using 4 DW operators for each variable.  Suppose that our
variables are called "A","B", and "C".  Our data declaration might look
something like this:
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; variable A
A    DW ?      ; least significant word of A

DW ?      ; next more significant word
DW ?      ; etc.
DW ?

; variable B
B    DW ?,?,?,?
; variable C:  the result of adding A and B
C    DW 4 DUP (?)

Several points are of interest here.  One is that we notice in the
declaration of A that the DW operator does not actually require a name;
it is possible to use the DW (and DB and DD) operator to define
variables that have no name.  In the declaration of B we notice that we
can use DW to define a number of word values in just one line of
assembly code, so long as the individual word variables do not need to
have names.  In the declaration of C, we see that we can go even
further (if we like) and, instead of entering 4 unknown words as
"?,?,?,?", we can instruct the assembler to DUPlicate the unknown value
4 times.  This is very convenient if we happened to have (say) 1000
unknown (or known, but identical) values rather than just 4 of them.
Another interesting point is that even though our variables are
INTEGER*8 in our minds, to the assembler they are only INTEGER*2.
Evidently, the interpretation of data structures in memory is more a
personal option than a necessity of the CPU.  Traditionally, the 808x
family of processors stores data in memory with the least significant
byte first, so we have adhered to tradition by putting the least
significant word first.

The program to add A and B, giving C, could look something like
this:

; program to add two INTEGER*8 values A and B to give C.
; First, add the least significant words:

mov ax,A  ; get the least significant word of A
add ax,B  ; add the least significant word of B
mov C,ax  ; store the in the least sig. byte of C.

; Next, add the more significant words:
mov ax,A+2     ; get the word at addr. A+2
adc ax,B+2     ; add (with carry) the next word of B
mov C+2,ax     ; save it.

; Similarly for the next two bytes:
mov ax,A+4
adc ax,B+4
mov C+4,ax
mov ax,A+6
adc ax,B+6
mov C+6,ax

The only novel feature here is the use of expressions like B+4 to refer
to the word four bytes past B.  In general, such expressions retain the
attributes of the symbols appearing in them:  Thus, since B is a word
variable, B+4 is also a word variable, but at a slightly different
address.  Note carefully that B+4 is an operation performed by the
assembler, and its only effect is to calculate a new address;  the
instructions above do not add 2 or 4 or 6 to the values in AX, A, B, or
C.  If we were using DEBUG, of course, such expressions would be
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meaningless since DEBUG doesn't recognize symbolic expressions.  In
DEBUG, we might define A to start at address 200, B at 208, and C at
210, so the expressions "A", "A+2", "A+4", and "A+6" would be replaced
by things like "[200]", "[202]", "[204]", and "[206]".

Flags

The carry flag is actually just one bit in the "flag" register of
the 8088 CPU.  There are a number of other flags in the flag register.
Here is a complete list of the flags and other bits in the register
(some of these won't be meaningful at the moment, but don't let that
worry you):

FLAGS SET BY CPU OPERATIONS

CF   Carry Flag, which we've already encountered.
PF   Parity Flag.  The parity flag is set if the

number of non-zero bits in the result is even,
and is cleared if odd.

AF   Half-carry Flag.  Used in BCD arithmetic.
ZF   Zero Flag.  Set to zero if the result is zero.
SF   Sign Flag.  Equal to the highest bit in the

result.  In unsigned arithmetic this is not
meaningful, but in signed arithmetic, the sign
flag is set if and only if the result is negative.

OF   Overflow Flag.  This flag is exactly like the
carry flag, except that it is used for signed,
rather than unsigned, arithmetic.

FLAGS SET BY THE USER

TF   Trace Flag.  When this is set, it is possible
in theory (i.e., with the proper software) to
single-step the processor.

IF   Interrupt-enable Flag.  We will discuss this
flag further later.

DF   Direction Flag.  Used in string operations and
controls whether strings grow upwards in memory
or downwards.  Also discussed later.

For the present, only the flags in the first group are understandable
and useful to us.  Of those, all but the Parity Flag and Half Carry are
constantly used.

The Overflow Flag deserves some further discussion.  The Overflow
Flag is the signed-arithmetic version of the Carry flag.  The Carry
Flag is used in unsigned arithmetic, and is set when unsigned
arithmetic overflows.  For example, in byte addition CF will be set if
the result is greater than 255 or less than 0.  For unsigned
arithmetic, however, bytes represent values between -128 and +127, so
results outside of this range will result in OF being set.  (And
similarly for word values.)  For example, subtracting 3-5 would result
in a carry (or actually a borrow) since the result, -2, is not in the
range 0..255, but no overflow since -2 is in the range -128..127.
Similarly, 100+100 would give an overflow but no carry.
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The Overflow flag is used only to detect integer overflows, and is
not used for multiple-precision signed arithmetic.

Jumps and Conditional Jumps

The instructions we have considered so far are limited in that
they allow only linear code:  that is, code in which the instructions
are executed sequentially according to their order in the PC's memory.
However, for real programming we need to have a way of transferring
control from one program location to another.  We need to be able to
choose which part of the computer's memory contains the program to be
executed.

The control is accomplished with "jump" instructions.  Jump
instructions have the syntax

mnemonic address

The mnemonic here can be a number of different things, but for the
moment, we will assume that it is "JMP".  A JMP instruction "jumps"
from the present location in memory (as indicated by the instruction
pointer register IP) to the specified address in memory.  In essence,
JMP simply stores the given address in the IP register.

In DEBUG, the address operand is, of course, simply a number.  For
example, if we executed the instruction

JMP 121

then the very next instruction executed would be the instruction
located at address 121 (hex).  For the Macro Assembler (and for
clarity), however, addresses are indicated by symbolic labels.  A label
is just like a variable name, except that it is followed by a colon.
For example, in the program fragment

.

.

.
JMP FOOBAR
ADD AX,21

FOOBAR:
INC AX

.

.

.

"FOOBAR" is a label.  The program also illustrates how labels are
actually used to represent addresses in JMP instructions.  Note that
labels are actually quite different from variable names, in that labels
represent addresses, while variables represent the contents of
addresses.

JMP performs an unconditional jump:  it always goes to the
specified address, regardless of any special conditions that may
obtain.  There are also a series of conditional jump instructions which
perform a jump only if some special condition is met.  These
instructions all have the general syntax given above, but their
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mnemonics differ.  With one exception, all conditional jumps occur only
if some particular configuration of flag bits is set.  Recall that
flags are set or cleared depending on the results of the most recent
arithmetic operations.  Thus, conditional jumps are used to execute
different segments of code if different arithmetic conditions obtain.

While we will eventually discuss all of the conditional jump
instructions, here is a list of those conditional jumps that are
pertinent to what we already know:

Jump                Jump
Flag         if set            if not set
Carry        JC address        JNC address
Zero         JZ address        JNZ address
Overflow     JO address        JNO address
Sign         JS address        JNS address
Parity       JP address        JNP address

In addition, the instruction

JCXZ address

jumps to the specified address if the CX register is zero.

JMPs and conditional jumps differ in another way.  JMPs may be
used to transfer control to any address in memory.  Conditional jumps,
on the other hand, are relative jumps.  A relative jump is one that,
loosely speaking, must be within 128 bytes of the current address.

Let us see how these things work by writing a short sample
program.  Let us write a program which multiplies the AX register by
ten, storing the result in the BX register.  This program will perform
repeated additions in order to perform the multiplication.  A Pascal
version of the program might appear like this:

var ax,bx,cx:integer;
begin

bx:=0;
for cx:=10 downto 1 do bx:=bx+ax

end;

We have used downto in the for-loop rather than to because in assembler
loops which count down are much easier to implement than loops which
count up.

Here is an assembler version of the program:

mov bx,0  ; the BX register holds the running sum
mov cx,10 ; loop ten times

again:
jxcz done ; if cx has reached zero, stop
add bx,ax ; BX:=BX+AX
dec cx    ; decrement the loop counter
jmp again

done:
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This is not a particularly good implementation, but it does illustrate
how the JCXZ instruction is used.  Here is a somewhat better job:

mov bx,0  ; the BX register holds the running sum
mov cl,10 ; this time, use CL as the loop counter

again:
add bx,ax ; bx:=bx+ax
dec cl    ; decrement the loop counter
jnz again ; repeat only if the loop counter isn't zero

Actually, neither version would be used in practice, since there is a
built-in "loop" instruction that combines several of the instructions
we have used here.

In DEBUG, the latter version would look like this:

-A100
4410:0100 MOV BX,0
4410:0103 MOV CL,10
4410:0105 ADD BX,AX
4410:0107 DEC CL
4410:0109 JNZ 105
4410:010B
-U100,10A
4410:0100 BB0000        MOV     BX,0000
4410:0103 B110          MOV     CL,10
4410:0105 01C3          ADD     BX,AX
4410:0107 FEC9          DEC     CL
4410:0109 75FA          JNZ     0105

ASSIGNMENT:  Using DEBUG, write two simple assembler programs.  The
first program, which should begin at the address 0100 (hex) must read
the byte at 0200, add 10, and store the result at 0201.  Use DEBUG's
D(ump) command to verify that the program operates correctly, and use
the computer's "print screen" button to print the dump on the printer.
The second program should subtract one from the number at location 0200
until reaching zero, then should store the number 65 at location 0202.
Again, print a dump to demonstrate that this program worked.  List both
programs (not necessarily simultaneously) on the screen with DEBUG's
U(nassemble) command, and print the screen to get a hardcopy listing of
these programs.
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; This is a sample program to perform multi-byte arithmetic.
; It adds the INTEGER*8 variables A and B, producing the
; result C.

; All of the lines in italics represent things that
; would be required in our program if we were using the
; Macro Assembler.  As long as we are using DEBUG, however
; we can forget such stuff and just concentrate on the
; underlined material.

data segment
a dw 4 dup (?) ; first operand
b dw 4 dup (?) ; second operand
c dw 4 dup (?) ; destination for result
data ends

stacksegment stack
dw 100 dup (?) ; alloc 100 words for stack

stackends

code segment
assume ds:data,cs:code

; main routine
beginproc far

push ds ; prepare return address
mov ax,0
push ax
mov ax,data ; initialize ds register
mov ds,ax
mov ax,stack ; initialize stack
mov ss,ax

mov ax,a ; first, add the least significant
add ax,b ; words of the two operands and
mov c,ax ; store the result in c.

mov ax,a+2 ; do the same with the next bytes,
adc ax,b+2 ; but add in the carry as well.
mov c+2,ax

mov ax,a+4 ; etc.
adc ax,b+4
mov c+4,ax

mov ax,a+6 ; etc.
adc ax,b+6
mov c+6,ax

ret ; end of the program.  go to DOS or DEBUG
beginendp

code ends

end begin
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Comments

1.  As mentioned last time, the word processing program called "PC-
Write" can be obtained from Manning Grinnan by supplying a disk to him.
This program can be used in place of EDLIN.  PC-Write is distributed as
"Shareware".  Shareware can be copied freely and given away, but if you
like the program the author requests a contribution (in this case,
$75).  From the published descriptions of this program, it appears to
be rather good.

2.  Some of you have noticed that if, in DEBUG, you type a perfectly
legal instruction of the form

mnemonic destination,source

you get an error message.  For example,

MOV [202],65

gives an error.  This happens because DEBUG is unable to determine
whether this is a byte instruction or a word instruction.  That is,
DEBUG cannot tell if you are moving the byte value 65 to the byte-
variable [202], or if you are moving the word value 65 to the word-
variable [202].  We will also find similar cases later when using the
Macro Assembler.  In cases like

MOV AL,65

or

MOV [202],AL

DEBUG can deduce that 65 and [202] must refer to byte-values since AL
is a byte register.  Thus, we sometimes need a way to tell DEBUG that a
quantity is a word or a byte.  This can be done by appending the phrase
"BYTE PTR" or "WORD PTR" to "[202]".  For example, by typing

MOV BYTE PTR [202],65

in the byte case, and

MOV WORD PTR [202],65

in the word case, our error messages would disappear.  "PTR" stands for
"pointer", so these additional phrases mean that [202] "points" to a
byte value or to a word value.  In the Macro Assembler, "WORD PTR"  and
"BYTE PTR" can be used for this, but they can also be used to override
a variable type.  For example, if FOO is defined by
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FOO  DB   ?
BAR  DW   ?

then the instruction

MOV  AX,FOO

is illegal since AX is a word register and FOO is a byte variable.
However, the assembler would allow

MOV  AX,WORD PTR FOO

This instruction would load the value of FOO into the AL register, and
the least significant byte of BAR into AH.

3.  Somehow I appear to have managed to give the impression in the last
class that  the instruction

JCXZ address

is a generic instruction which works for all registers:  i.e., that
there are instructions like

JALZ address
JSIZ address

etc.  This is not true, however.  There is only a "JCXZ" instruction,
plus other conditional jumps which depend on flag values.

4.  The DEBUG program does not accept symbolic references to addresses.
That is, you cannot use variable names and labels in DEBUG.  In DEBUG,
you must always explicitly (i.e., numerically) use the addresses you
want.  On the other hand, when we get to use the Macro Assembler, we
will see that it usually accepts only symbolic addresses and that it is
difficult to use actual numerical addresses with it.

Review

In the last class, we begain learning about the arithmetic
instructions of the 8088 CPU.  We learned how to add and subtract bytes
or words using the ADD and SUB instructions.  These instructions have
the syntax

mnemonic destination,source

which was identical to that of the MOV instruction.  We learned that
there were "increment" and "decrement" instructions

INC destination

and

DEC destination

which acted like
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ADD destination,1

and

SUB destination,1

The latter instructions differed from the former only in that the carry
flag was treated differently, and in that they required less time to
execute and less memory to store.

We learned that the arithmetic operations affect the various flags
of the CPU -- these being

CF   The Carry Flag
ZF   The Zero Flag
SF   The Sign Flag
OF   The Overflow Flag
PF   The Parity Flag
AF   The Half-carry Flag

The carry flag was particularly useful in multiple precision
arithmetic.  In adding (or subtracting) byte values, we found that it
was actually possible to produce a 9-bit result, while adding word
values could produce a 17-bit result.  This extra bit is stored in the
CPU as the carry flag.  Multiple-precision arithmetic routines could
take advantage of this by using the instructions

ADC  destination,source

(or "ADd with Carry") and

SBB  destination,source

(or "SuBtract with Borrow").  For example, we can subtract the AX
register from the BX register with the word-subtraction instruction

SUB BX,AX

or with the byte instructions

SUB BL,AL
SBB BH,AH

Another use for the CPU flags was that they could be tested by the
conditional jump instructions.  An unconditional jump instruction was
of the form

JMP address

and transferred program control unconditionally to the specified
address.  For example, in DEBUG, the instruction

JMP 200

would immediately start executing the instructions at address 200
(hex).  This was a little trickier symbolically since we had to define
symbolic names to memory locations.  Labels had the same
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characteristics as variable names, except that they are followed by a
colon.  For example, we could have in our program

.

.

.
JMP TEST_LABEL

.

.

.
TEST_LABEL:

.

.

.

Conditional jumps, on the other hand, jump to the specified
address only if the appropriate flags are set.  For example,

JC TEST_LABEL

would jump to location TEST-LABEL only if the carry flag is set to one.
Here are the various conditional jumps we saw:

Jump               Jump
Flag         if set            if not set
Carry      JC address         JNC address
Zero       JZ address         JNZ address
Sign       JS address         JNS address
Overflow   JO address         JNO address
Parity     JP address         JNP address

We also saw that the conditional jump

JCXZ address

does not depend on any flag values, but will jump if the CX register is
zero.

ASSIGNMENT:  Read sections 3.1-3.3 of the textbook.

Addressing Modes

So far, we have talked about "sources" of data and "destinations"
for data, and source and destination operands have always been of one
of the following three types:

IMMEDIATE      values were simply actual values,
such as 5 or 200.

REGISTERS      were the CPU registers, and were
referred to by their names, like AX, BX,
CX, DX, etc.

DIRECT         addresses (though we did not refer to
them by this name), were the addresses
at which values were stored.  These were referred
to by their symbolic names in
the Macro Assembler and by addresses in
square brackets (like "[200]") in DEBUG.
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These three ways of specifying sources and destinations are called
"addressing modes" of the CPU.  There are actually several more
addressing modes, which we will discuss now.  In general, each of these
new addressing modes can be used in any situation where we can use
direct addressing.  With new addressing modes, we can add flexibility
to the way memory is accessed.

REGISTER INDIRECT.  In register indirect addressing, the address
of the memory value is stored in a register, and we access the variable
by giving the name of the register rather than the name of the
variable.  Let us consider an example of this.  Suppose that we have
the data declaration statements

FOO  DB   100
BAR  DW   3E1H
SAM  DW   35
JANE DW   75

and that the address at which the variable BAR is stored is placed into
the BX register of the CPU.  If want to load the value of the variable
BAR into the AX register, we can use either direct addressing,

MOV AX,BAR

or we can use register indirect addressing as follows

MOV AX,[BX]

In executing the first instruction, the CPU merely goes to the
specified location and reads the value stored there (putting the result
in AX).  In the second instruction, the CPU reads the BX register,
interprets that value as an address, and fetches the value stored at
that address.  (The second instruction, by the way, executes 1 clock
cycle more quickly than the first, even though it may appear at first
sight that the CPU is doing more work.)

This may be a little clearer if we think of using the DEBUG
program.  Suppose that the variable BAR is stored at address 200 (hex).
Then the first instruction is just

MOV AX,[200]

To use the second instruction, however, the BX register must have been
set up to contain the address of BAR -- say with the instruction

MOV BX,200

Thus,

MOV BX,200
MOV AX,[BX]

accomplishes the same thing as

MOV AX,[200]
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except for the effect on the BX register.

It is a little more difficult to accomplish the operation "MOV
BX,200" (that is, loading the address of BAR into BX) symbolically (if
we are using the Macro Assembler), since we haven't learned yet how to
compute the addresses of variables.  That is, we have not yet learned
how to store the address (as opposed to the value) of a variable into a
register.  This is accomplished with the "OFFSET" operator.  The
expression "OFFSET BAR" is the address of the BAR variable.  Thus, the
instruction

MOV BX,OFFSET BAR

loads the address of BAR into BX.

Here are some examples of register indirect addressing

MOV CX,[BX]    ; move the word value stored at the
; address contained in BX to the CX
; register.

ADD AL,[DI]    ; add (to AL) the value of the byte
; stored at the address contained in
; the DI register.

SUB [SI],DX    ; subtract the dx register's contents
; from the word-value stored at the
; address contained in the SI reg.

INC BYTE PTR [BX]   ; increment the byte stored
; at the address pointed to by BX.

INC WORD PTR [BX]   ; ditto, but word value instead.
ADC WORD PTR [SI],65     ; add the immediate value 65

; to the word value at the address
; pointed to by SI.

Notice the use of "WORD PTR" and "BYTE PTR" in some of these
instructions.  These must be used in the cases shown because there is
no implicit information in the instruction to allow the assembler to
deduce whether an expression like "[BX]" refers to a byte stored in
memory, or to a word.

In fact, only the BX, SI, and DI registers can be used to point to
addresses in this way.  (The BP register can also be used, but we will
avoid using it until we discuss segmented memory.)  Thus, instructions
like

MOV [AX],DL
ADD AX,[DX]

are illegal.

Let us write a short program using register indirect addressing.
Recall that in the last class we wrote a short program that performed
INTEGER*8 addition, adding the variables A and B to get C.  A, B, and C
were declared as
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; EACH VARIABLE CONSISTS OF 4 WORDS.  THE LEAST SIGNIFICANT
; WORD IS STORED FIRST IN MEMORY, AND THE MOST SIGNIFICANT
; WORD IS LAST.
A    DW   4 DUP (?)
B    DW   4 DUP (?)
C    DW   4 DUP (?)

and the words making up each of these variables were arranged in order
of increasing significance (i.e., least significant word first).  Our
previous program went something like this:

MOV  AX,A      ; ADD LEAST SIGNIFICANT WORDS.
ADD  AX,B
MOV  C,AX

MOV  AX,A+2    ; ADD (WITH CARRY) NEXT WORD
ADC  AX,B+2
MOV  C+2,AX

etc. (for next two words)

With register indirect addressing, we could write the program something
like this, using the SI register to point to the words in A, DI to
point to B, and BX to point to C:

; FIRST, SET UP POINTER REGISTERS
MOV  SI,OFFSET A    ; USE SI REGISTER TO POINT TO THE

; WORDS IN A.
MOV  DI,OFFSET B    ; USE DI FOR B.
MOV  BX,OFFSET C    ; USE BX TO POINT TO C.

; NOW ADD LEAST SIGNIFICANT WORDS
MOV  AX,[SI]        ; GET LEAST SIG. WORD OF A
ADD  AX,[DI]        ; ADD TO LEAST SIG. WORD OF B
MOV  [BX],AX        ; STORE AT C

; NOW UPDATE POINTERS TO POINT TO NEXT WORDS OF A, B, AND C
INC  SI   ; WE HAVE TO INCREMENT SI TWICE, SINCE
INC  SI   ; ADD SI,2 WOULD DESTROY THE CARRY FLAG
INC  DI
INC  DI
INC  BX
INC  BX

; NOW ADD (WITH CARRY) THE NEXT MORE SIGNIFICANT WORDS:
MOV  AX,[SI]
ADC  AX,[DI]
MOV  [BX],AX

; NOW UPDATE POINTERS:
etc.

Considering that the latter program contains a lot more code, is a lot
more difficult to understand, and (for all we know) isn't any faster,
why would we ever try to do this calculation using register indirect
addressing?  The reason is that the latter program can easily be fixed
to work for any size integers, not just INTEGER*8.  This, in turn, can
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be done because the latter program can be easily rewritten as a loop.
The code used in the latter program is the same for each word added,
except that the very first word uses an ADD and the other words use
ADC.  This is no problem, however, since we could simply use ADC each
time and add an instruction to our program that clears the carry flag
initially.  Here is the way our program looks, written as a loop:

; FIRST, SET UP POINTER REGISTERS
MOV  SI,OFFSET A    ; USE SI REGISTER TO POINT TO THE

; WORDS IN A.
MOV  DI,OFFSET B    ; USE DI FOR B.
MOV  BX,OFFSET C    ; USE BX TO POINT TO C.
MOV  CX,4           ; USE CX AS A LOOP COUNTER AND

; LOOP ON 4 WORDS.
CLC                 ; CLEAR THE CARRY FLAG

; NOW, LOOP

AGAIN:
MOV  AX,[SI]        ; FETCH ONE OF A'S WORDS.
ADC  AX,[DI]        ; ADD TO WORD OF B.
MOV  [BX],AX        ; STORE IN C.

; UPDATE THE POINTER REGISTERS TO THE NEXT WORDS IN A,B,C
INC  SI   ; WE HAVE TO INCREMENT SI TWICE, SINCE
INC  SI   ; ADD SI,2 WOULD DESTROY THE CARRY FLAG
INC  DI
INC  DI
INC  BX
INC  BX

DEC  CX             ; DECREMENT LOOP COUNTER
JNZ  AGAIN          ; IF LOOP COUNTER NOT ZERO YET, ; LOOP AGAIN

In this program, we can add integers of any precision just by putting
the appropriate word-count in CX at the beginning of the program.

BASE RELATIVE and DIRECT INDEXED addressing do not actually differ
from each other in practice (though possibly they differ from a logical
standpoint), so we will not distinguish between them.  In these
addressing modes, the effective address of the data in memory is
computed using one of the registers BX, DI, or SI (or BP) as above, but
with an additional numerical offset added to the address.  This is
useful for a variety of applications, including addressing elements of
one-dimensional arrays.  The assembler and debugger (syntactically)
accept a variety of forms for this addressing mode.  For example, to
load into AX the word 2 bytes past the address pointed to by the SI
register, DEBUG will accept any of the following forms:

MOV  AX,2[SI]
MOV  AX,[SI]2
MOV  AX,2+[SI]
MOV  AX,[SI+2]
MOV  AX,[SI]+2

However, two forms are most commonly encountered;  these are



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 68/361

CLASS 4

[base register + offset]
address[index register]

BX and BP are known as the base registers, while SI and DI are known as
the index registers.  Both "offset" and "address" represent numerical
offsets, but the interpretations are different.  In accessing the
elements of a one-dimensional array, the first thing that appears in
the forms above (i.e., either "base register" or "address") is usually
interpreted to be the starting address of the array.  The second part
of the address (i.e., "offset" or "index register") is usually taken to
be the relative position of the element in the array.  For example, we
think of FOO[SI] as representing the SI-th element of the array FOO,
but we think of [BX+3] as representing the third element of the array
pointed to by BX.  (Assuming byte-sized array elements, of course).

In these addressing modes, if you use the name of a variable as
the numeric offset, the assembler is clever enough to know that you are
referring to the address of the variable rather than to its value.
Moreover, the value actually referred to in memory is assumed to be of
the same type as the variable whose name was used.  That is FOO and
FOO[SI] are both byte values in memory.  For example, the operation

MOV  AL,FOO

which is performed in register indirect addressing by

MOV  BX,OFFSET FOO
MOV  AX,[BX]

can be performed in direct indexed addressing by

MOV  SI,0
MOV  AX,FOO[SI]

This addressing mode is somewhat more convenient for our INTEGER*8
addition program since with it we can get away with using less
registers.  Using direct indexed addressing our program might look like
this:

; FIRST, SET UP POINTER REGISTER AND COUNTER
MOV  SI,0      ; USE SI AS ARRAY INDEX
MOV  CX,4           ; USE CX AS A LOOP COUNTER AND

; LOOP ON 4 WORDS.
CLC                 ; CLEAR THE CARRY FLAG

; NOW, LOOP

AGAIN:
MOV  AX,A[SI]       ; FETCH ONE OF A'S WORDS.
ADC  AX,B[SI]       ; ADD TO WORD OF B.
MOV  C[SI],AX       ; STORE IN C.

INC  SI             ; NEXT ELEMENT OF THE ARRAYS
INC  SI

LOOP AGAIN
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One new feature of this program is the use of the "LOOP" instruction.
The instruction

LOOP address

is equivalent to the instructions

DEC  CX
JCXZ address

and is very commonly used to control loops.  It is slightly interesting
to compare this program to the previous version, which used register
indirect addressing.  This version is very simple compared to the
previous version, in terms of length and clarity of the source code.
In terms of execution speed, register indirect operations are in
general 4 clock cycles faster than direct indexed operations.  However,
by using direct indexed addressing we have been able to skip 2 pointer
updates, each taking 4 clock cycles.  Thus, each iteration of the loop
requires 4 clock cycles (less than one microsecond) more in the second
version of the program.  Of course, the second version required less
initialization of registers and, taking the entire program into account
(not just the loop), the second version executes 8 clock cycles (about
1.6 microseconds) slower than the first.

BASE INDEXED addressing is like direct indexed addressing, except
that the contents of two registers are combined with a numerical
displacement to get the address of the data.  In base indexed
addressing, BX (or BP) is combined with either SI or DI.  That is, base
indexed addressing combines a base register and a index register and an
offset.  This addressing mode is useful for accessing the elements of
two-dimensional arrays.  As in direct indexed addressing, the assembler
accepts a wide range of syntax:  For example, each of the following
loads AX with the word two bytes past the address consisting of the sum
of the BX and DI registers:

MOV  AX,[BX+2+DI]
MOV  AX,[DI+BX+2]
MOV  AX,[BX+2][DI]
MOV  AX,[BX][DI+2]
MOV  AX,2[BX][DI]

For instance, if the registers BX and DI contain 3E1H and 47H,
respectively, this instruction would load AX with the word at address
3E1H+47H+2H=42AH.   Here are some other examples of valid base index
addressing:

ADD  AL,2[BX][DI]   ; ADD A BYTE TO AL
SUB  2[BX][DI],AX   ; SUBTRACT AX FROM A WORD
INC  WORD PTR 2[BX][DI]  ; INCREMENT A WORD
DEC  BYTE PTR 2[BX][DI]  ; DECREMENT A BYTE
MOV  BYTE PTR 2[BX][DI],65    ; SAVE THE IMMEDIATE

; BYTE 65
MOV  FOO[BX][DI],65  ; DITTO

As before, in some cases the assembler cannot figure out the size of
the desired memory value (i.e., byte or word), so the specifiers "WORD
PTR" and "BYTE PTR" are appended.  In the final example, the variable
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FOO is a byte value, so the assembler assumes that the immediate value
is a byte also.

ASCII

Up to now, we have thought of the values stored in various memory
bytes as representing numbers -- i.e., unsigned bytes with values from
0 to 255 or signed bytes with values from -128 to 127 -- or as parts of
other numbers (for example, the individual bytes of a word).  However,
the computer can also be used to manipulate character data, such as the
text manipulated by the EDLIN program.  Thus, a fourth interpretation
of a byte is that it represents a character of text.

Characters are represented as bytes using ASCII, or the American
Standard Code for Information Interchange.  This is not related to the
IBM mainframe EBCDIC character code standard.  ASCII is almost
universally used throughout computing and is summarized (in the form
used on the IBM PC) on page 296 of the text.  Let us briefly discuss
ASCII.

The byte values 0-1F (hex) typically represent control codes that
are used to pass information to I/O devices such as printers or
terminals.  The byte values 1-26 (decimal) are passed to the computer
when you type a control character at the keyboard (that is, when you
hold down the "ctrl" key and press one of the letters "A"-"Z").
Several of these codes also have their own dedicated keys:  8 is the
backspace, 9 is the tab, and 13 is the carriage return.  Of the control
characters that do not have their own dedicated keys, the most
interesting are:  7 (the "bell"), 10 (the "line feed"), and 12 (the
"form feed").  Another useful byte value, 27 (decimal), is called the
"escape" character and is created by pressing the "ESC" key.  Often,
programs (as well as I/O devices) use these codes to activate special
functions.  We will study later how these various codes are used.
Under some circumstances, the values mentioned above are used to
perform the functions described, while under other circumstances the
IBM PC treats these codes as "graphics characters" that may or may not
be available on other computers.

The code 20 (hex) represents a blank space, while the codes 30-39
(hex) represent the digits "0"-"9".  The upper case letters "A"-"Z" are
represented by the ASCII codes 41-5A (hex), while the lower-case
letters are represented by the codes 61-7A.  Most of remaining codes
less than 80 (hex) are punctuation characters.

ASCII does not define the values of the codes above (or equal to)
80H.  On the IBM PC, however, they are used to represent various
graphics and special characters.  Programs using these special
characters cannot be counted upon to run on computers other than a
legitimate, pedigreed IBM PC.

If we use the macro assembler (rather than DEBUG), literal
characters, enclosed in quotes, can be used any place a byte constant
can be used.  For example, instead of

FOO  DB   41H  ; 41H is the ASCII code for capital A

we could have



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 71/361

CLASS 4

FOO  DB   'A'

Instead of

SUB  AL,41H

we could have

SUB  AL,'A'

Such substitutions are more meaningful than might be imagined.  In the
above example, if AL already contained one of the characters "A"-"Z",
the subtraction performed there would convert the character to a number
from 0 to 25.

As another example, consider a program to convert a two-digit
hexadecimal number stored in DX in ASCII form into a byte stored in AL.
We will suppose that the DH register contains the ASCII code of a
character "0"-"9" or "A"-"F" representing the most significant digit,
while the DL register contains the least significant digit.  Since we
haven't learned many of the 8088 instructions it would be convenient to
use, this program won't be the best one we could possibly write.

; FIRST, LET'S PUT SOME CHARACTERS IN DX, SO THE PROGRAM
; WILL HAVE SOME DATA TO WORK ON:

MOV DH,'7'
MOV DL,'F'

; THAT IS, LET'S CONVERT THE NUMBER 7F (HEX).

; THE PROGRAM.
; FIRST, WORK ON THE UPPER DIGIT:

MOV AL,DH      ; GET THE DIGIT
SUB AL,'A'     ; IS THE DIGIT BIGGER OR EQUAL TO "A"?
JC NUMERIC_1   ; IF "0"-"9", JUMP TO ANOTHER ROUTINE
ADD AL,10      ; IS "A"-"F", SO CONVERT TO 10-15
JMP CONTINUE_1

NUMERIC_1:
MOV AL,DH      ; GET THE DIGIT AGAIN
SUB AL,'0'     ; CONVERT TO 0-9

; AT THIS POINT, AL CONTAINS A VALUE 0-15
CONTINUE_1:

ADD AL,AL      ; DOUBLE AL
ADD AL,AL      ; QUADRUPLE IT
ADD AL,AL      ; OCTUPLE IT
ADD AL,AL      ; NOW AL CONTAINS 16*UPPER DIGIT OF HEX
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; NOW WORK ON SECOND DIGIT
MOV AH,DL      ; GET THE DIGIT
SUB AH,'A'     ; IS THE DIGIT BIGGER OR EQUAL TO "A"?
JC NUMERIC_2   ; IF "0"-"9", JUMP TO ANOTHER ROUTINE
ADD AH,10      ; IS "A"-"F", SO CONVERT TO 10-15
JMP CONTINUE_2

NUMERIC_2:
MOV AH,DL      ; GET THE DIGIT AGAIN
SUB AH,'0'     ; CONVERT TO 0-9

; AT THIS POINT, AH CONTAINS A VALUE 0-15
CONTINUE_2:

ADD AL,AH      ; ADD LOWER HEX DIGIT TO 16*UPPER

Upon running this program, the string "7F" stored in DX should be
converted to the byte 7FH stored in AL.
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; This is the third version of the INTEGER*8 addition
; program, using direct indexed addressing.

Data segment
a dw 4 dup (?) ; first operand
b dw 4 dup (?) ; second operand
c dw 4 dup (?) ; result
data ends

stack segment stack
dw 100 dup (?) ; space for stack

stackends

code segment
assume cs:code,ds:data

beginproc far
push ds ; prepare return address
mov ax,0
push ax
mov ax,data ; prepare DS register
mov ds,ax
mov ax,stack ; prepare SS register
mov ss,ax

; first, set up the various pointer registers
mov si,0 ; word index
mov cx,4 ; cx is the loop counter
clc ; clear the carry flag

; now, loop:
again: mov ax,a[si] ; get word of a

adc ax,b[si] ; add word of b
mov c[si],ax ; store in c
inc si ; INC twice instead of ADD SI,2 to
inc si ; avoid changing carry flag.
loop again ; decrement cx, loop if not zero

ret
beginendp

code ends

end begin
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; PROGRAM TO CONVERT THE 2-DIGIT HEXADECIMAL NUMBER WHOSE
; ASCII CODES ARE STORED IN THE DX REGISTER (DL=LEAST
; SIGNIFICANT DIGIT, DH=MOST SIGNIFICANT DIGIT) INTO A
; BYTE VALUE IN THE AL REGISTER.  THIS PROGRAM IS NOT
; WRITTEN VERY WELL BECAUSE WE HAVEN'T LEARNED ALL OF THE
; INSTRUCTIONS NEEDED TO DO IT WELL.

; FIRST, LET'S PUT SOME CHARACTERS IN DX, SO THE PROGRAM
; WILL HAVE SOME DATA TO WORK ON:

MOV DH,'7'
MOV DL,'F'

; THAT IS, LET'S CONVERT THE NUMBER 7F (HEX).

; THE PROGRAM.

; FIRST, WORK ON THE UPPER DIGIT:
; IF THE DIGIT IS "0"-"9", WE MUST CONVERT IT TO THE
; BYTE 0-9, ELSE IF THE DIGIT IS "A"-"F" WE MUST CONVERT
; IT TO THE BYTE 10-15.  THEN, SINCE THIS IS THE MOST
; SIGNIFICANT DIGIT, IT MUST BE MULTIPLIED BY 16 AND STORED.

MOV AL,DH      ; GET THE DIGIT
SUB AL,'A'     ; IS THE DIGIT BIGGER OR EQUAL TO "A"?
JC NUMERIC_1   ; IF "0"-"9", JUMP TO ANOTHER ROUTINE
ADD AL,10      ; IS "A"-"F", SO CONVERT TO 10-15
JMP CONTINUE_1

; THIS PART IS EXECUTED IF THE DIGIT IS "0"-"9"
NUMERIC_1:

MOV AL,DH      ; GET THE DIGIT AGAIN
SUB AL,'0'     ; CONVERT TO 0-9

; AT THIS POINT, AL CONTAINS A VALUE 0-15
CONTINUE_1:

ADD AL,AL      ; DOUBLE AL
ADD AL,AL      ; QUADRUPLE IT
ADD AL,AL      ; OCTUPLE IT
ADD AL,AL      ; NOW AL CONTAINS 16*UPPER DIGIT OF HEX

; NOW WORK ON THE LOWER DIGIT USING SAME TYPE OF ALGORITHM
MOV AH,DL      ; GET THE DIGIT
SUB AH,'A'     ; IS THE DIGIT BIGGER OR EQUAL TO "A"?
JC NUMERIC_2   ; IF "0"-"9", JUMP TO ANOTHER ROUTINE
ADD AH,10      ; IS "A"-"F", SO CONVERT TO 10-15
JMP CONTINUE_2

; EXECUTE THIS ONLY IF LOWER DIGIT IS "0"-"9"
NUMERIC_2:

MOV AH,DL      ; GET THE DIGIT AGAIN
SUB AH,'0'     ; CONVERT TO 0-9

; AT THIS POINT, AH CONTAINS A VALUE 0-15
CONTINUE_2:

ADD AL,AH      ; ADD LOWER HEX DIGIT TO 16*UPPER
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Review

We learned about several specifying phrases that can be used in
source or destination operands to modify their use.  The "WORD PTR"
specifier changes the type of a variable to WORD.  For example, in an
instruction like

INC  WORD PTR FOO

the variable FOO, which we normally declare to be a BYTE, is used as if
it was a WORD.  Similarly, "BYTE PTR" is used to force a variable to be
of type BYTE in a given instruction.  The phrase "OFFSET" specifies
that the address of the variable should be used, rather than its value.
For example,

MOV  BX,OFFSET FOO

loads the BX register with the address of the variable FOO, rather than
with its value (which would not be allowed anyway since FOO is a BYTE).

Most of the previous class was spent discussing the remaining
addressing modes of the 8088 microprocessor.  Up until that class we
had dealt exclusively with the immediate addressing mode, the direct
addressing mode, and the register addressing mode.

The new addressing modes learned were the register indirect mode,
the direct indexed mode (which is divided in the book into the two
modes called direct indexed and base relative), and the base indexed
mode.  Here is a summary of all of the addressing modes:

IMMEDIATE           the instruction specifies the actual value to
be used in the operation.

DIRECT              the instruction specifies the address of the
value to be used.

REGISTER            the instruction specifies the register
containing the value to be used.

REGISTER INDIRECT   the instruction specifies the register
containing the address of the value to be
used.

DIRECT INDEXED      the instruction specifies a register and a
number which, when combined, give the address
of the value to be used.

BASE INDEXED        the instruction specifies two registers and a
number which, when combined, give the address
of the value to be used.
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We found essentially, that each of these modes may be used in any
situation where any other mode can be used.  There are some exceptions,
of course.  An immediate value cannot be the destination operand of an
instruction, for example.

We also discussed the ASCII correspondence between bytes and
characters.  We found that each character corresponds to some byte
value (the ASCII code of the character), but that not all ASCII codes
correspond to printable characters.  Some ASCII codes, for example,
correspond to non-printable "control characters".

Finally, we learned (in passing) two new instructions.  These were
the instructions

CLC            ; clear carry flag
LOOP address   ; same as DEC CX/JCXZ address

System Calls

So far, we have concentrated mostly on 8088 assembly language
itself, with very little reference to the actual operating system being
used.  That is, while we have used some programs (DEBUG, EDLIN) which
are available only for the MS-DOS operating system, the programs we
have written for ourselves have been "generic" in nature and could run
regardless of the operating system used.

However, as we have been discovering, the types of operations
which the microprocessor can perform are very primitive in nature --
data movement, integer arithmetic, etc.  There is no built-in way of
reading the keyboard, writing to the crt, accessing disk-files, and so
forth.  These facilities are provided instead by the operating system,
and the way they are provided differs from operating system to
operating system.  In this class, we will study the I/O features
provided by the MS-DOS operating system, since this is the DOS used by
the overwhelming majority of IBM PCs and compatibles.  Thus, the
programs we write using the MS-DOS functions should still run on the TI
Professionals and on other compatibles.  Later in the semester, we will
see how to do some kinds of I/O directly through the hardware,
bypassing the operating system entirely.  When we finally reach that
point, we will discover some incompatibilities between (for example)
IBM PCs and TIs.  However, that is still in the future.

Most DOS functions are performed by executing the instruction

INT 21H   ; call DOS

DOS provides on the order of 40 different services that can be
activated in this way.  You select between the various services (which
are summarized -- with some misprints -- on pages 218-223 of the text)
by placing a number in the AH register describing the desired function.
You may also need to place additional arguments in other registers.
Some services return values in registers or in memory.

(NOTE:  anybody familiar with the CP/M operating system will
notice that the first 30 or 35 functions mentioned on pp. 218-223 are
very similar to the CP/M "BDOS" calls.  This happens because MS-DOS is
designed to emulate CP/M and, in particular, to allow automated
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translation of CP/M assembly language source code to MS-DOS assembly
language source code.)

For now, almost all of these DOS services do not concern us.  We
will at first just use a few of the simplest functions, like writing to
the screen or reading from the keyboard.

The simplest DOS service is function number 1, which reads a
keyboard character.  When a key is pressed on the computer's keyboard,
the ASCII code of the selected character is "read" by the operating
system and is presented to the user program when DOS function number 1
is executed.  Here is how to use DOS function 1:

MOV  AH,1      ; SELECT FUNCTION NUMBER 1
INT  21H       ; CALL MS-DOS

When this program fragment is executed, DOS takes control of the
computer away from your program and simply waits for a key to be
pressed at the keyboard.  The ASCII code for this character is returned
in the AL register.  For example, if the character "A" was typed, we
would find the ASCII code 41H in the AL register.  Function 1 displays
the character on the screen as it is typed (it echoes the character).
In some cases this isn't desirable, and we would prefer to just read
the keyboard character without any screen echo.  This is accomplished
with DOS function 8, which is otherwise just like function 1:

MOV  AH,8      ; PREPARE TO READ KBD WITHOUT ECHO
INT  21H       ; CALL MS-DOS

Another commonly used DOS service is function number 2, which
displays a character on the screen.  This is used much like function
number 1, except that before using it the character to be displayed
must be put into the DL register.  For example, to print an "A" we
would

MOV  DL,'A'    ; PREPARE THE CHARACTER TO BE PRINTED
MOV  AH,2      ; SELECT DOS FUNCTION NUMBER 2
INT  21H       ; CALL MS-DOS

A similar facility is provided by DOS function number 5.  With DOS
function 5, the character in DL is printed on the printer rather than
displayed on the screen.

Here is a simple program which uses some of these functions:  it
is a very simple "typewriter", that allows you to type at the keyboard
and see what you type displayed on the screen.  As an added
convenience, we will also arrange things so that you can exit the
program by pressing the ESC key:

AGAIN:
MOV  AH,1      ; FIRST, GET (AND ECHO) A CHARACTER

; USING FUNCTION 1
INT  21H       ; CALL DOS
CMP  AL,27     ; IS THE CHARACTER <ESC>?
JNZ  AGAIN     ; IF YES, QUIT.  IF NOT, GET ANOTHER.



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 81/361

CLASS 5

A similar program using DOS function 8 instead of function 1 would need
to explicitly display the character since function 8 does not echo:

AGAIN:
MOV  AH,8      ; GET KBD CHARACTER USING DOS FUNC. 8
INT  21H       ; CALL MS-DOS
CMP  AL,27     ; <ESC> CHARACTER?
JZ   DONE      ; IF YES, THEN QUIT
MOV  DL,AL     ; IF NOT, PREPARE TO DISPLAY IT
MOV  AH,2      ; SELECT THE SCREEN-DISPLAY FUNCTION
INT  21H       ; CALL DOS
JMP  AGAIN     ; AND REPEAT ...

DONE:

One interesting point about this program is the use of the "CMP" or
"compare" instruction.  CMP has a syntax identical to the SUB
instruction, of which it is a variation.  CMP sets or resets the status
flags (CF, ZF, SF, etc.) just as if a subtraction has been performed,
but does not modify the destination operand in any way.  In this case,
AL contains the keyboard character which we want to test against the
ASCII "escape" code, 27.  These two are equal if and only if we get
zero when subtracting them -- that is, if and only if the Zero Flag is
set after a subtraction.  However, a subtraction would change the value
of AL, which we don't want.  Thus, CMP is exactly what we need to
perform this test since it sets the flags properly but does not change
AL.

In using the above program, it is interesting to note that when
you press the carriage return key, the cursor goes to the beginning of
the line, but does not advance to the next line.  The latter is the
function of the "line feed".  Every line which is printed or displayed
in MS-DOS is terminated with a carriage return, followed by a line feed
-- i.e., the ASCII codes 13 and 10.  This effect can also be seen when
we use DOS function 9, the "display string" function.  Unlike function
2, which can just display one character at a time, function 9 can
display an entire string of characters with just one invokation.  In
order to use function 9, we must first store the starting address of
the string in the DX register.  The string is simply a sequence of
ASCII codes stored someplace in memory.  The string is terminated with
a "$" character.  A typical use for function 9 might be something like
this:

MESSAGE DB 'Hello, I am a sample program!',13,10,'$'
.
.
.

MOV  DX,OFFSET MESSAGE   ; LOAD UP ADDRESS OF STRING
MOV  AH,9
INT  21H

As you might expect, executing this results in the message "Hello, I am
a sample program!" appearing on the CRT.  Several features of this tiny
program are worth commenting on.  First, we see once again the ability
of the DB and DW operators to store more than one byte or word.  In
this case, the DB statement is equivalent to
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MESSAGE DB 'H'
DB 'e'
DB 'l'

.

.

.
DB '$'

Second, we observe that the carriage return and line feed codes 13 and
10 have been used to move the cursor to a new line after displaying the
string.  Otherwise, the cursor would simply have sat foolishly at the
end of the message on the screen.  Third, we see once again the use of
the "OFFSET" operator to give the address of a variable rather than the
value of a variable.

Of the many other DOS functions available, the most important ones
are probably those that allow the assembly program to read or write
disk files.  We will discuss these DOS functions later when we are in a
better position to use them.

Segments

As we know, the address space of the 8088 microprocessor is 1
megabyte in size.  However, this address space is not continuous:
rather, it is divided into segments of size 64K.  Each segment, on the
other hand, does have continuous addresses, ranging from 0 to 65535.

Segments cannot begin at arbitrary places in memory; they can only
begin at addresses that are multiples of 16.  Therefore, when the
addresses of segments are referred to, they are always divided by 16.
For example, segment 0 begins at address 0, segment 1 begins at address
16, segment 2 begins at address 32, etc.  Thus, we can have segment
numbers ranging from 0 to 65535.  Both segment numbers and addresses
within segments are word values requiring 16 bits for their
specification.

Locations in memory are seldom specified by their actual
addresses.  They are almost always specified by giving their segment
number and their address within the segment.  For example, rather than
discussing the memory location 80000H, we might discuss the location
"8000:0000".  The meaning of something like "8000:0000" is that we are
referring to address 0 within the segment 8000H.  In an expression like
this, the number before the colon is the "segment" and the number after
it is called the "offset".  This explains the use of the OFFSET
operator to get the addresses of variables in assembly language
instructions like

MOV  SI,OFFSET FOO

These segment:offset pairs are not uniquely defined.  That is,
while we can uniquely determine a memory location once we are given a
segment:offset pair (by means of the formula
address=16*segment+offset), we cannot determine the segment and the
offset if we are simply given the address.  In fact, many different
segment:offset pairs describe the same address.  In the example above,
all of the following refer to address 80000H:
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8000:0000, 7FFF:0010, 7FFE:0020, etc.

Since the segment and the offset are word values, they may be
specified by the CPU's 16 bit registers rather than by actual numbers.
For example, we might (intellectually, at least) have a segment:offset
pair like 8000:DX or SI:DI.  Actually, these particular combinations
are not allowed.  In fact, for most purposes, the CPU does not even
allow you to specify combinations like 8000:0000.

In the 8088 microprocessor, segments almost always have to be
specified by one of the so-called segment registers CS, DS, ES, or SS,
while offsets are specified by one of the memory addressing modes
(i.e., any addressing mode except immediate or register).  Thus, we
typically see segment:offset specifications like

DS:FOO
ES:[SI]
CS:5
etc.

In accessing data, the 8088 combines the data address specified in the
instruction with a segment register, thus getting the full address of
the data.  The 8088 has default segment register choices which it uses
in certain types of memory accesses.  For the instruction types we have
learned about, the rule is this:

The DS segment register is always used by default
unless the BP base register is used in indirect
addressing.

If the BP register is used in indirect addressing, the SS segment
register is the default.  Thus, for example, we have the following
equivalent forms of instructions:

MOV  AX,BAR              MOV  AX,DS:BAR
MOV  [SI],AL             MOV  DS:[SI],AL
ADC  WORD PTR [DI],65    MOV  WORD PTR DS:[DI],65
MOV  DL,5[BP]            MOV  DL,SS:5[BP]
MOV  DL,5[BP][SI]        MOV  DL,SS:5[BP][SI]

We see that data for programs usually resides in the Data Segment
(i.e., the segment pointed to by the DS register), or in the Stack
Segment (pointed to by SS).  In most cases, but not all, these default
segment register choices can be overridden by explicitly specifying a
new segment register:

MOV  AX,ES:BAR
MOV  ES:[SI],AL
ADC  WORD PTR ES:[DI],65
MOV  DL,ES:5[BP]
MOV  DL,ES:5[BP][SI]

all access data stored in the Extra Segment.

Some defaults cannot be overridden.  All program code is contained
in the Code Segment, pointed to by the CS register.  All stack
operations, which we discuss later,  access the Stack Segment, pointed
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to by SS.  String operations use the Data Segment as their sources and
the Extra Segment as their destinations.  For flexible programming,
therefore, our programs must change the values of the segment registers
-- i.e., the locations of the segments.  For the simple programs we
will write at first, though, the segment registers can simply be set
properly at the beginning of the program and then be forgotten.

We have been so successful in using the DEBUG program to run our
own programs partially because DEBUG allows us to forget these details
about segments.  DEBUG automatically assigns all of the segment
registers CS, DS, ES, and SS so that they (initially) contain the same
values.  Because of this, we can write our programs correctly just by
assuming that the address space of the CPU is 64K in size and that the
offsets of the addresses are actually the entire address.  We will see
shortly that the situation is somewhat more complex when we begin using
the Macro Assembler.

Pseudo-Ops and the Format of .ASM Programs

Programming with DEBUG is easy since we just type in our program
and our variables, and can execute our program immediately.  With the
Macro Assembler, however, which we now begin to use, there are many
additional programming details which must be taken care of before we
can even assemble our program.  These details are really only
incidental since they are much the same for every program and have very
little to do with the algorithm employed or the function performed.
Indeed, for most of our programs, we can simply employ a "pattern" or
"template" program which takes care of all these details, but which has
places where we can insert our own variables or source code.

(See handout.)

Most of the template is devoted to proper allocation of memory
segments.  For example, the lines of the program containing the words
SEGMENT or ENDS tell the assembler where memory segments begin and end.
The parts of the program bounded by the lines

DATA SEGMENT
DATA ENDS

tell the assembler where the segment called "DATA" begins and ends.
The word "DATA" in this case is simply a name and does not imply that
this is the Data Segment, pointed to by the DS register.  As it
happens, for clarity we have chosen DATA to be the Data Segment in this
particular sample program -- but it doesn't have to be that way in
general.  Assuming, however, that the segment called "DATA" is the Data
Segment, the ASSUME pseudo-op is used to inform the assembler of this
fact.  In our program, the assembler is told to assume that "DATA" is
the name of the Data Segment and "CODE" is the name of the Code
Segment.  This information helps the assembler compute the addresses
(actually, the offsets) of variables and labels, but the ASSUME pseudo-
op does not actually assign the proper values to the segment registers.
Thus, we must supply additional code to perform this housekeeping
detail.  The EQU pseudo-op is used to define "constants".  This is
useful if there is some value which is constant throughout the program,
but which we may wish to change at some later time.  For example, in
our template, the "size of the stack" is defined by a constant called
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"STACKSIZE".  The size of the stack never changes in the program, but
may be decreased or increased by the programmer the next time the
program is assembled:  therefore, it is usefully defined to be a
constant.

We will not discuss these housekeeping details further at this
time.  Let it suffice for the present that our template program can be
used to build up real programs, whether or not we understand why.  As
we become more familiar with assembly language, and in particular with
memory allocation, the necessity of some of these "features" of the
assembler will become clear to us (or, at any rate, clearer than they
are now).

ASSIGNMENT:

1.  Read Chapter 2 through page 38, plus section 2.7.

2.  Write a program using EDLIN and run it using the Macro Assembler.
You can use the "template" program and simply insert your own code and
variables in the spaces provided.  This program should:

a) Read the keyboard using a DOS function.
b) Exit from the program if the escape key is pressed.
c) Otherwise, convert the character to upper case.
d) Display the upper case character on the screen using a DOS

function.
e) Go back to step "a".

You will turn in a disk (no paper!) containing the source code (call it
"PROG3.ASM") and the executable code (PROG3.EXE) of the program.  Write
your name on the disk-label with a felt-tipped pen, and embed your name
in the program (in a comment).   I will run it to make sure that it
works.  (And you had better not crash my system, either!)  Please use
only the instructions we have discussed in class or that have been in
the assigned reading.

3.  Write a second program which is similar but more complex.  Again,
turn in the ASM file (PROG4.ASM) and the EXE file (PROG4.EXE), on the
same disk as PROG3.  This program should:

a) Using a DOS function (or a routine of your own devising),
display a sign-on message (such as, "CS-5330 Program 4, by John
Doe").

b) Input lines of text, as follows:
i)     Display a prompt at the beginning of the line
ii)    Input a character from the keyboard using a DOS

function.
iii)   If the character is an <ESC>, go to step "c".
iv)    If the character is printable (' ' through ASCII code

7EH), display the character on the screen by using a DOS
function and put it in a text buffer in memory.

v)     If the character is a backspace, display it and remove
the previous character from the text buffer.  However,
do not backspace past the physical beginning of the
line.

vi)    If the character is a carriage return, display a
carriage return and a line feed, putting both of these
characters in the buffer.  Then, go to the beginning of
step "b".

vii)   Ignore any other non-printable characters.
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viii)  Go back to step "ii".
c) Print the entire buffer on the printer.
d) Return to DOS.

In addition to this, the program must check for buffer overflow:  that
is, it must not allow any characters to be stored in the buffer once it
is full.  Therefore, you must provide some appropriate error routine to
handle this case.  Because this is our first long program, I have
posted a sample solution to the problem on the door of my office and
you are free to look at this if you get stuck.  NOTE:  I wrote this
program myself (I didn't get it out of any book), so if any substantial
portion of my code appears in the middle of your program I'll know (and
I'll make you do it over again)!

Running the Assembler and the Linker

The current reading assignment in the textbook contains
descriptions of how to run the linker and the assembler, so it would
not do for me to spend too much time on this.  However, to a certain
extent I can cut through the mumbo-jumbo in the book and summarize the
use of these programs as follows:

Suppose that you have written an assembly language source file,
and that this file is called "SOURCE.ASM" and is stored on drive B:.
In order to assemble it, you must put a disk containing the assembler
(in our case, the Macro Assembler -- MASM -- rather than the small
assembler as mentioned in the book) and type

B>A:MASM SOURCE;

Notice that you do not need to type the ".ASM" extension of your source
filename since this is the default for the assembler.  The semi-colon
at the end of the line means:  just skip all of the prompts which the
assembler would otherwise give and which are shown in the book.  This
syntax will not create a "listing file" (as described in the book), so
if you want to do that you'd better follow the book's instructions.

After the assembler runs, assuming that there were no errors, your
B: disk will contain, among other things, a new file called
"SOURCE.OBJ".  The file must now be "linked" using the linker program.
To do this, put a disk containing the linker program in drive A: and
type

B>A:LINK SOURCE;

The linker will then execute and, if there are no errors, produce a new
file on the B: disk called "SOURCE.EXE".  The program may now be
executed by typing

B>SOURCE

or may be debugged with DEBUG (as described in section 2.7 of the text)
by typing

B>A:DEBUG SOURCE.EXE
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As should be clear, you will save yourself a lot of time flipping
disks if you make just one disk containing DEBUG, MASM, LINK, and EDLIN
and use this disk in the A: drive.

Logical Operations

For a little relaxation, let us discuss the simple "logical"
operation instructions supplied by the 8088 CPU.  We have already seen
how to perform simple integer arithmetic using the 8088, and logical
arithmetic turns out to be very similar.

The most primitive instruction is the

NOT destination

instruction, which takes the one's complement (or logical negation) of
the destination operand.  The destination can be either a byte or a
word, whereas we know that logical operations really apply to two-
valued variables.  How, then, can "logical" operations be performed on
bytes, which have 256 possible values?  The answer is that many of the
8088's logical operations work "bitwise".  Each bit of the destination
operand is taken to be a two-valued logical operator and is acted on
separately.  As a simple example with the NOT instruction, if we had
the code

MOV  AL,0
NOT  AL

we would find that the resulting AL value would have all of its bits
set (as opposed to the initial value, with all bits clear).  The value
0 is typically used in many programming languages to represent the
logical value .FALSE., so the result of this negation should be the
value which programming languages typically use to mean .TRUE.  In
fact, for our example, the result is a signed value of -1 (or, unsigned
255) which is, indeed, typical.

There are four bitwise logical instructions with the syntax

mnemonic destination,source

The AND instruction performs a bitwise logical "and" of the source
operand to the destination operand.  The most common use of this
instruction is probably to "mask out" certain bits of the destination.
This happens because any bit anded with a set bit is unchanged, but any
bit anded with a clear bit is cleared.  For example,

AND  AL,0FH

would reset the four highest bits of AL, but leave the four lowest bits
unchanged.

The OR instruction performs a bitwise logical "or" of the source
to the destination operands.  This instruction is commonly used to set
selected bits of the destination, since bits or-ed with 0 are
unchanged, but bits or-ed with 1 are set.  For example,

OR   AL,0F0H
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would set the four highest bits of AL, leaving the lowest four bits
unchanged.

The XOR instruction performs a bitwise logical "exclusive or" of
the source to the destination.  This instruction is commonly used to
reverse selected bits of the destination, since bits xor-ed with 0 are
unchanged, but bits xor-ed with 1 are "flipped".  For example,

XOR  AL,0F0H

would negate the four highest bits of AL, leaving the lowest four bits
unchanged.

The TEST instruction bears the same relation to AND that the CMP
instruction bears to SUB.  Namely, it sets all of the flags just as AND
would, but it does not actually modify the destination operand in any
way.  In general, the only flags of use in any of these bitwise
operations are PF (the parity flag) and ZF (the zero flag).
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ASSIGNMENT:

1.  Read Chapter 2 through page 38, plus section 2.7.

2.  Write a "typewriter" program using EDLIN and run it using the Macro
Assembler.  You can use the "template" program and simply insert your
own code and variables in the spaces provided.  This program should:

a) Read the keyboard using a DOS function.

b) Exit from the program if the escape key is pressed.

c) Otherwise, convert the character to upper case.

d) Display the upper case character on the screen using a DOS
function.

e) Go back to step "a".

You will turn in a disk (no paper!) containing the source code (call it
"PROG3.ASM") and the executable code (PROG3.EXE) of the program.  Write
your name on the disk-label with a felt-tipped pen, and embed your name
in the program (in a comment).   I will run it to make sure that it
works.  (And you had better not crash my system, either!)  Please use
only the assembly language features we have discussed in class or that
have been in the assigned reading.
3.  Write a second program which is similar but more complex.  Again,
turn in the ASM file (PROG4.ASM) and the EXE file (PROG4.EXE), on the
same disk as PROG3.  This program should:

a) Using a DOS function (or a routine of your own devising),
display a sign-on message (such as, "CS-5330 Program 4, by John
Doe").

b) Input lines of text, as follows:

i)     Display a prompt at the beginning of the line

ii)    Input a character from the keyboard using a DOS
function.

iii)   If the character is an <ESC>, go to step "c".

iv)    If the character is printable (' ' through ASCII code
7EH), display the character on the screen by using a DOS
function and put it in a text buffer in memory.

v)     If the character is a backspace, display it and remove
the previous character from the text buffer.  However,
do not backspace past the physical beginning of the
line.

vi)    If the character is a carriage return, display a
carriage return and a line feed, putting both of these
characters in the buffer.  Then, go to the beginning of
step "b".
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vii)   Ignore any other non-printable characters.

viii)  Go back to step "ii".

c) Print the entire buffer on the printer.

d) Return to DOS.

In addition to this, the program must check for buffer overflow:  that
is, it must not allow any characters to be stored in the buffer once it
is full.  Therefore, you must provide some appropriate error routine to
handle this case.  Because this is our first long program, I have
posted a sample solution to the problem on the door of my office and
you are free to look at this if you get stuck.  NOTE:  I wrote this
program myself (I didn't get it out of any book), so if any substantial
portion of my code appears in the middle of your program I'll know (and
I'll make you do it over again)!
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; This is a "pattern" for writing assembly language programs for use
; with the Macro Assembler.  A simple program should look exactly like
; this, except that the comment "VARIABLES GO HERE!" should be replaced
; by your DB and DW operators (i.e., your variable declarations), and ;
; the comment "CODE GOES HERE!" should be replaced by your executable
; code.  This is not the only "pattern" which will work, but it does
; work, which is something.  The parts in BOLDFACE are the parts of
; the program that really need to be typed in (as opposed to comments).
; The parts in ITALICS are words (or values) which I have chosen for
; convenience and which could be replaced by anything else (so long as
; the change is made consistently throughout the program).  All words
; not in italics must be exactly as shown.

; The following defines the system stack, for storing temporary
; variables and return addresses.
stacksize equ 100               ; size of the stack in words
stack   segment stack
        dw      stacksize dup (?)
stack   ends

; The following defines the data area of the program.  All variables
; are stored in this region.
data    segment
;       VARIABLES GO HERE!
data    ends

; All of the rest defines the code area of the program.
code    segment
        assume  cs:code,ds:data

start   proc    far
        mov     ax,stack        ; set up stack
        mov     ss,ax
        mov     sp,stacksize
        push    ds              ; standard return address setup
        mov     ax,0
        push    ax
        mov     ax,data         ; set up data segment
        mov     ds,ax

;       CODE GOES HERE!

        ret
start   endp

code    ends

        end     start
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University of Texas at Dallas
COURSE NOTES FOR CS-5330
IBM PC ASSEMBLY LANGUAGE

CLASS 6

Comments

1) Grading policy.  Since the last homework assignment was rather long
and frightening to some of you, I'd like to comment on how grades will
be assigned.  In the first place, the goal of the course is for you to
learn how to program in 8088 assembly language, and to learn (at least
in an elementary way) how to exploit the features of the MS-DOS
operating system and the IBM PC (or compatible) hardware.  The homework
assignments are not intended to test this ability.  Rather, assembly
language programming can be effectively learned only through practice,
and the homework is intended to supply the necessary practice.  This is
why I am willing to freely discuss the programs with you and to post
solutions on my office door.  These things are all directed towards the
goal of giving you familiarity with the language and of pointing out to
you your misconceptions.  The fact that the homework is not "graded"
does not indicate that it is not important -- in fact, the homework is
very important, since if you do not do it you will not learn the things
I will eventually grade you on.  Successive homework assignments will
involve more and more newly learned features of assembly language and
the IBM PC but will not become significantly longer.

2) You will be graded on two programming projects -- a "mid-term"
project and a "final" project.  You will be given several weeks to
complete each of the projects (probably two weeks for the mid-term and
three for the final).  You are guaranteed an "A" for the course if you
produce a working final project that meets the assigned specifications.
If you are unable to do this, the midterm and the quality of the final
project will be taken into account.  In some cases, the homework
programs may also be considered, but this will certainly not be true in
general.  Nevertheless, a working program is the standard of success in
this course.  We are not here to learn "armchair programming".

Review

In the previous class we finally reached the threshold of writing
programs that actually do something.

First, we learned about some of the MS-DOS functions that are
activated with the instruction "INT 21H".  These MS-DOS functions are
used to obtain input and output in our programs.  We learned about 5
different MS-DOS functions:
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FUNCTION             AH        INPUT         OUTPUT

Get keyboard char.        1          --       AL=character
(with screen echo).

Display character         2     DL=character       --
on screen.

Print character           5     DL=character       --
on printer.

Get keyboard char.        8          --       AL=character
(no screen echo).

Display string on         9     DX => string       --
the screen.

Characters are represented by their ASCII codes, while a string is a
sequence of ASCII codes in memory, terminated by a "$" character.

We discussed memory segments.  We found that program code is
always taken from the code segment, which is pointed to by the code
segment register CS.  Stack operations (which we haven't discussed yet)
always take place in the stack segment, pointed to by the stack segment
register SS.  String operations (which we also haven't discussed) take
their source operands from the data segment (pointed to by DS) and use
the extra segment (pointed to by ES) as their destination.

In accessing the data for a program, however, there is a certain
amount of flexibility.  By default, all data is in the data segment
(pointed to by DS) unless an addressing mode is used in which the BP
base register indirectly contributes to the address.  (E.g., MOV
AL,[BP].)  In this case, the stack segment (SS) is used by default.
However, these defaults can be explicitly overridden by specifying a
different segment register in the instruction.  (E.g., MOV AL,ES:[BP].)
Here, then, is a summary of how the memory segments and segment
registers are related:

DEFAULT      ALTERNATE
TYPE OF                SEGMENT       SEGMENT

MEMORY REFERENCE             BASE          BASE

Instruction fetch.            CS           NONE
Stack operation.              SS           NONE
String source.                DS        CS, ES, SS
String destination.           ES           NONE
BP used as base register.     SS        CS, DS, ES
Other.  (General data.)       DS        CS, ES, SS

In using the DEBUG program, all segment registers are initially set to
the same value (and remain that way unless changed by the program), so
quite often we do not need to worry about such things.

We learned something about the format which source programs need
to have before they can be properly assembled and run.  A "template"
program was handed out.  This template could be used as a guide for
writing real programs; all we had to do was to insert our variable



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 96/361

CLASS 6

declarations into a certain slot in the program, and insert our source
code into another designated slot.

We learned how to use the Macro Assembler and the linker to create
an executable program from our assembly language source-code.  The was
very easy.  If our source code was called source.ASM, then to assemble
the program we used the command

B>A:MASM source;

Note the use of the semi-colon at the end of the line.  To then "link"
the program we typed

B>A:LINK source;

Note that in neither case did we use the filename extension (initially
".ASM").  Finally, the program can be executed with just

B>source

or can be loaded and tested with DEBUG by typing

B>A:DEBUG source.EXE

Finally, we learned several new 8088 instructions.

CMP  destination,source

was identical to the SUB command, except that the result of the
subtraction was thrown away rather than stored in the destination
operand.  Thus, the net effect was to set the status flags as if a SUB
instruction had been executed.  This instruction is useful for
comparisons of many kinds.  We also saw several instructions for
performing logical arithmetic.  The instruction

NOT  destination

took the logical one's complement (or negation) of the destination
operand.  Similarly, the instructions

AND  destination,source
OR   destination,source
XOR  destination,source

respectively ANDed, ORed, or XORed the source operand to the
destination operand.  The instruction

TEST destination,source

bears the same relationship to AND that CMP does to SUB.  That is, it
ANDs the source operand to the destination, but throws away the result
rather than saving it in the destination, thus setting the flags as if
an AND has been executed.
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The Shift and Rotate Operations

The remaining logical instructions perform the "rotate" and
"shift" operations.  The best way to describe these operations is in
terms of examples.  Let us suppose that the AL register contains the
binary value 00110011B and consider what a "shift" operation would do
the value in AL.

A logical right shift of the AL register moves all of the bits of
our value to the right.  The bit which is furthest to the right already
is shifted completely out of our value (and is stored in the carry
flag), while a new bit of zero is introduced on the left.  Thus, our
value becomes 00011001B, with the carry flag set to 1.  Shifting again,
we get 00001100B with CF=1.  Shifting again, we get 00000110B with
CF=0, etc.  The logical right shift has a number of uses, of which the
most important may be unsigned division by 2 (or a power of two).  That
is, a logical right shift is the same as integer division (of an
unsigned number) by two.  Moreover, the "remainder" of the division
(which is always zero or one) is stored in the carry flag.  The
"division" nature of the shift is easily seen in the above example:  in
decimal notation, our original value is 51, and the successive shifts
give 25, 12, and 6.  Pictorially, this operation is represented as
follows:

0 --> value --> CF

meaning that a zero bit enters the value from the left, and the
rightmost bit is placed into CF.

The syntax of the logical right shift instruction is

SHR  destination,count

where the destination operand specifies the byte or word value to be
shifted (in any addressing mode except immediate), and the count
operand specifies how many places the value is to be shifted.  The
count operand can have ONLY two forms:  it can be the number 1, or it
can be the register CL:

SHR  destination,1
SHR  destination,CL

For the count operand no other numbers are allowed, and no other
registers or addressing modes.  This syntax is also used for all of the
other rotate and shift operations.  In our simple example, the code
sequence

MOV  AL,00110011B   ; OUR SAMPLE NUMBER.
SHR  AL,1           ; DIVIDE BY 2.
SHR  AL,1           ; DIVIDE BY 2.
SHR  AL,1           ; DIVIDE BY 2.

would result in AL containing 6, as would the sequence

MOV  AL,00110011B   ; OUR SAMPLE NUMBER.
MOV  CL,3           ; DIVIDE BY
SHR  AL,CL          ; 2^3=8.
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The arithmetic right shift instruction, SAR, acts identically
except that instead of shifting in a zero bit at the left, the most
significant bit is simply duplicated:

____
|    |
'--> value --> CF

This instruction is useful for integer division by two of a signed
value since, it preserves the sign of the result.  For the example we
used above, the initial value was positive, so this instruction acts
exactly like SHR.  Let us therefore consider a negative example.  In
fact, let us choose as our initial value -51 (11001101B), the two's
complement of our previous example.  Successive shifts give us
11100110B (-26 with CF=1), 11110011B (-13), 11111001B (-7 with CF=1),
11111100B (-4 with CF=1), 11111110B (-2), 11111111B (-1), and an
endless series of 11111111B (-1 with CF=1).  While these are not
exactly what we normally would think of as being the results of these
divisions, they are clearly closely related to the more normal
conception.

The logical left shift instruction, SHL (or SAL, which is
absolutely equivalent), is similar to the instructions discussed so
far, except that the shift is to the left rather than to the right:

CF <-- value <-- 0

This instruction essentially performs integer multiplication of the
destination operand by two, storing the carry (naturally enough) in the
Carry Flag.  In our example, starting with 00110011B (51), successive
left shifts by one place give us 01100110B (102), 11001100B (204),
10011000B (148, with CF=1), etc.  If the value is shifted by just one
place, the Carry Flag may, of course, be used to detect an overflow in
the result.  With an instruction like

SHL  destination,CL

where CL contains a value greater than one, the Carry Flag cannot be
used for this purpose since it contains merely the overflow bit from
the final shift, which may be zero even if many overflows occurred on
earlier shifts.  However, such overflows can be detected with the
Overflow Flag, which is set if any signed overflow has occurred.

Next, consider the rotate instructions.  There are two rotate
instructions:  ROL (or rotate left) and ROR (rotate right).  These
instructions are like the SHL and SHR instructions, except that instead
of shifting in a zero at one side, they shift in the value which would
otherwise be shifted out into the Carry Flag.  Pictorially, ROL does
the following:

___________
|           |

CF <--- value <--'

That is, the most significant bit is stored in the carry flag and
shifted into the lowest bit.  In our oft-used example, 00110011B would
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become successively 01100110B, 11001100B, 10011001B, etc.  Similarly,
the ROR instruction does something like this:

___________
|           |
'--> value ---> CF

Clearly, for either of these operations, if we successively rotated 8
times (for bytes, or 16 times for words), we would get back the value
we started with (except for the carry flag).

The rotate through carry instructions RCL and RCR differ from ROL
and ROR in that they, respectively, perform the functions

___________________
|                   |
'-- CF <-- value <--'

___________________
|                   |
'--> value --> CF --'

Thus, as in the SHR and SHL instructions, the destination and the Carry
Flag together form an effective 9 bit (for byte destination, or 17 bit
for word destination) register, which is rotated as a unit.

As an example of the use of some of these instructions, let us
write a short program fragment which multiplies the AX register by 10.
As we know, the 8088 microprocessor has a built-in multiplication
instruction which can perform this operation.  Since we have not yet
encountered this instruction, we will use the SHL instruction instead.
Recall that the SHL instruction basically multiplies the destination
operand by 2count, where the count operand is either 1 or CL.  We can
therefore compute 10*AX by using instead the formula 10*AX=8*AX+2*AX,
and using SHL to compute the intermediate results.  Since we can only
conveniently test the SHL result for overflow of signed arithmetic, we
will assume that AX is a signed value.  Our program will terminate with
the Overflow Flag set if an overflow occurs, and OF clear if no
overflow occurs:

; Multiply AX by 10
shl  ax,1      ; first, multiply AX by 2.
jo   done      ; if this results in an error, quit.
mov  bx,ax     ; otherwise, save 2*AX as BX.
mov  cl,2      ; now, multiply AX (=2*original AX)
shl  ax,cl     ; by 4.
jo   done      ; again, quit on error.
add  ax,bx     ; otherwise, add the intermediate

; results to get 10*AX.
done:

This program is not especially efficiently written, but (even so) it is
much faster than a program using the integer multiplication instruction
to multiply AX by 10.  From Appendix C of the text, we find that the
execution time of an integer (word) multiply varies from 118 to 133
clock cycles.  However, adding the execution times of the individual



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 100/361

CLASS 6

instructions of our program, we get an execution time (assuming no
overflow) of 2+4+2+4+16+4+3=35 clock cycles.

Another simple use (this time, of the SHR instruction), is to
divide a byte into nibbles.  A nibble consists of 4 bits, while a byte
consists of 8 bits, so each byte consists of two nibbles.  A nibble has
a value between 0 and 15, and hence can be expressed in terms of a
single hexadecimal digit.  To get the least significant nibble of a
byte (say, AL) is very easy, since we simply use the AND instruction:

AND  AL,0FH    ; get less significant nibble of AL.

To get the more significant nibble, however, requires us to divide by
16 -- that is, to shift right by four bits:

; Get the more significant nibble of AL:
MOV  CL,4      ; shift right by 4 bit positions.
SHR  AL,CL

When, eventually, we begin to directly program the computer hardware,
rather than doing our I/O through the operating system, we will see
that there are many other cases in which information is encoded into
bit strings less than 8 (or 16) bits long.  These smaller bit strings
are sometimes "packed" into bytes, and are accessed through shift
operations.

Just as ADDs and ADCs or SUBs and SBBs can be combined to perform
multiple-precision integer addition and subtraction, shifts and rotate-
through-carries can be combined to perform multiple-precision integer
multiplication and division.  We will see more of this later.

Jump Instructions, Continued

So far, we have discussed the unconditional jump instrucion JMP,
and the conditional jump instructions JCXZ, JC, JNC, JZ, JNZ, etc.
These instructions all had the syntax

mnemonic address

Here, the address operand was taken to be any label (in MASM) or any
specific number (in DEBUG).

Our conception of the jump instructions must now be modified
somewhat.

In the first place, there are actually three varieties of
unconditional jump instructions, which we might refer to as "JMP FAR",
"JMP NEAR", and "JMP SHORT".  The JMP NEAR case is the default, being
equivalent to JMP as we have used it so far.   With JMP NEAR, the new
address is assumed to be within the current code segment, so we only
need to specify the new offset in the address rather than a new segment
as well.

For JMP FAR, on the other hand, the new address may be anyplace in
memory.  Thus, a new value for the CS (code segment) register and the
IP (instruction pointer) register must be specified somehow by the
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instruction.  We will not discuss JMP FAR further at this point since
we have no immediate application for it.

JMP SHORT is a form that may be used if the new address is within
-128..127 of the current address.  It has the advantage of requiring
both less memory and less execution time than JMP NEAR, and hence
should be used whenever possible.  Indeed, every JMP we have used so
far in our examples or homework programs could (and should) be replaced
by JMP SHORTs.  The syntax of this instruction is

JMP  SHORT address

For example,

JMP  SHORT boston_celtics
.
.
.

boston_celtics:

might be a reasonable replacement for

JMP  boston_celtics
.
.
.

boston_celtics:

after the recent NBA playoffs.  It is perfectly safe to use JMP SHORTS
even if you don't actually know how far you are jumping, since if the
jump is more than -128..127 bytes, the assembler will simply give you
an error message to this effect.

There are several additional conditional jump instructions which
we have not discussed yet.  These conditional jump instructions are
useful if we need to test whether one number is greater than or less
than another number.  The first step in determining such relationships
is often to use the "CMP destination,source" instruction.  This
instruction sets (or resets) all of the flags in such a way that we can
determine all of the traditional numerical relations between the
destination operand and the source.  There are six traditional
numerical relationships:  equal, not-equal, greater, less, greater-or-
equal, and less-or-equal.  The following table summarizes all of the
conditional jump instructions relevant to testing these conditions:

Jump on the condition:       Unsigned   Signed
destination .GT. source         JA        JG
destination .EQ. source         JE        JE
destination .NE. source         JNE       JNE
destination .LT. source         JB        JL
destination .LE. source         JBE       JLE
destination .GE. source         JAE       JGE

Thus, if we executed

CMP  AL,80H
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then

JA   address

would jump if AL, considered as an unsigned number, was greater than
80H (128).  Similarly,

JC   address

would jump if AL was greater than 80H considered as a signed number --
i.e., greater than -128.  Some of these instructions are actually the
same as other instructions we have encountered earlier under different
names.  For example, JE is absolutely the same instruction as JZ.
These two different names are provided by the assembler as a
convenience to you (to make your code clearer).  JE is typically used
when testing for "equality", while JZ is used when testing for "zero".
Other of the jumps have no equivalent among the single-flag conditional
jumps and actually test combinations of flags to determine if a jump
should be taken.

Although we have not mentioned it before, all of the conditional
jumps are SHORT jumps.  Thus, instructions like JC, JNC, JZ, JNZ, etc.,
are incapable of jumping to a label more than -128 or 127 bytes away.
This can become a problem in a complicated program, and you will
undoubtedly encounter assembler error messages complaining about your
conditional jumps before long.  The only reasonable cure for this
problem is to avoid writing "spaghetti" code with a complex structure
of jumps, and to write instead structured code with "calls" to routines
that perform well defined functions.  We will discuss such subroutines
next.

Stack Operations, Procs, and Calls

Although we have been able to write some programs (the homework)
that jump around to different parts of the program in some intricate
pattern, there is a flaw in our ability to control program execution.
That flaw is that we have not yet seen any way to execute a fragment of
code and then return to where we were.  The ability to do this,
however, is crucial if we are to write programs that we can understand.

This can be made clearer with an example.  In our last homework
assignment, there was a program that we can schematically outline as
follows:

again:
get_a_keyboard_character_into_AL
cmp  al,27                         ; escape key?
je   done                          ; if so, quit.
convert_AL_to_upper_case
display_AL_on_screen
jmp  again

done:

In actuality, the lines "get_a_keyboard_character_into_AL", etc. were
implemented by code sequences that ranged from fairly trivial to
slightly more complicated.  If we could write our programs in a way
that was more similar to the pseudo-code shown here, however, two
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advantages would result.  One is clearly that our programs would be
easier to understand.  The other is that we could easily re-use
sequences of code.  In this example, there is only one place in the
program where we convert a character to upper case -- but in other
programs it could easily happen that an "upper case" function was
required at many points in the program, and we would have to type in
the same code over and over again.

We can do something very similar to the pseudo-code if the concept
of a procedure is introduced.  A procedure is a portion of a program
which executes when it is called, and then returns to the address
immediately following the instruction that called it.  If, for example,
we introduced procedures called "GETCHR" [for "get character (from
keyboard)"], "PUTCHR" [for "put character (to screen)"], and "UPCASE"
(for "convert to upper case"), we could write the program as

again:
call getchr    ; get a keyboard character
cmp  al,27     ; escape key?
je   done      ; if so, quit.
call upcase    ; convert to upper case
call putchr    ; display the character
jmp  again

done:

using the new instruction "CALL", which has the same syntax as a "JMP"
instruction.  This code fragment, which is clearly much easier to
understand than the homework solution we wrote earlier, would actually
work, if we went ahead and wrote the source-code for the procedures
GETCHR, PUTCHR, and UPCASE.

Just as we had a "pattern" or "template" for writing programs, we
can have a pattern (albeit a very simple one) for writing procedures.
Here is a "template" for a procedure:

name proc
;    PUT CODE FOR PROCEDURE HERE!

ret
name endp

The name of the procedure is selected by the programmer -- in this
case, it would presumably be "getchr", "putchr", or "upcase".  Although
procedures may be nested (we'll talk about this later), for now we'll
assume that all procedures are defined within the code segment, but do
not overlap.  (Discuss handout.)

One thing that procedures do not automatically do (but which it
would be nice to have) would be for all registers which are not
actually used to pass arguments to and from a procedure to be
preserved.  For example, when we use the DOS functions, the registers
not actually used remain the same after the INT 21H instruction as
before it.  In our routine UPCASE we also find the registers preserved,
except for the AL register (which contains the value output by the
procedure).  However, the GETCHR and PUTCHR procedures do not have this
property -- GETCHR modifies the AH register, while PUTCHR modifies the
AH register and the DL register.
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We will see in a moment that with the 8088 microprocessor it is
only convenient to preserve 16 bit registers, and not 8 bit registers.
Thus, since GETCHR uses the 16 bit register AX to return a result, we
will "forgive" it for changing AH (even though only AL actually
contains the result).  In this extended sense, GETCHR also preserves
registers.  UPCASE, however, is now guilty of screwing up two 16 bit
registers, AX and DX, rather than two merely 8 bit registers, AL and
DL.

We can arrange for UPCASE to preserve registers by introducing the
PUSH and POP instructions.  Both of these instructions have the syntax

mnemonic register

The instruction

PUSH register

"saves" the value of the register, while

POP  register

restores it.  We will see in a moment how these instructions (and CALLs
and RETurns) work.  The most important aspect of these instructions,
however, is that there are two simple rules governing their use:

1) For every PUSH there must be an eventual POP
(before any RET can be executed), and

2) Registers are popped in reverse order of the way
they were pushed.  Thus, PUSH AX/PUSH BX should be
reversed with POP BX/POP AX.

To see how these instructions work in practice, let us make the
procedure UPCASE preserve the AX and DX registers.  To do this, we must
save (PUSH) the values of the registers before they are modified, and
restore (POP) them before exiting the procedure with RET.  Our new
routine might look something like this:

; DISPLAY THE AL CHARACTER ON THE SCREEN.
PUTCHR PROC

PUSH AX        ; SAVE AX REGISTER.
PUSH DX        ; SAVE DX REGISTER.
MOV  AH,2      ; PREPARE TO DISPLAY THE CHARACTER.
MOV  DL,AL
INT  21H
POP  DX        ; RESTORE THE DX REGISTER.
POP  AX        ; RESTORE THE AX REGISTER.
RET

PUTCHR ENDP

In the next class, we will learn about the stack -- i.e., about
how the PUSH, POP, CALL, and RET instructions actually do what they do
-- and about MS-DOS functions for accessing disk files.
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ASSIGNMENT:

1.  Do the problems for Chapter 2.  Read Chapter 3.4 through section
3.7.  This chapter need not be thoroughly understood at this point
since you will gain competence in the material of Chapter 3 through
practice rather than through study.

2.  Write the assembly-language source code for a procedure (that is,
code beginning with the "PROC" pseudo-op, ending with the "ENDP"
pseudo-op, called with a "CALL" instruction, and finished with a "RET"
instruction) whose specifications are as follows:

The routine should convert a byte-value in AL to an ASCII string
in DX.  For example, if the input to the routine is 7FH (in the AL
register), then the output should be the character '7' in the DH
register and 'F' in the DL register.  A logical way of writing this
procedure (to my mind) would be something like this in pseudo-code:

get the most significant nibble (4 bits) of AL
convert it to a hex digit
store the hex digit in DH
get the least significant nibble of AL
convert it to a hex digit
store the hex digit in DL

Clearly, for this, it would be helpful to write yet another procedure
to convert a nibble (0-15) to a hex digit ('0'-'9','A'-'F').

Test this routine.  (For example, you can test it using DEBUG.)
You need not explicitly turn in the subroutine since it will be used
(and therefore embedded in) the next problem:

3)  Write a "file dump" program (called PROG5.ASM) which does the
following:

a)  Displays a prompt on the screen and inputs a string from the
keyboard.  This string represents a filename.  You can use DOS
functions 9 and 10 for this.

b)  Uses a DOS function (3DH) to open (for reading) the specified
file.  If the file does not exist, displays an error message and quits.
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c)  Reads (DOS function 3FH) the file and (using the procedure you
wrote earlier) produces a hexadecimal and ASCII dump similar to the
D(ump) facility in DEBUG.  Each line of the display should consist of:
a relative byte number, 16 bytes displayed in hexadecimal, and 16
characters.  For non-printable characters, a dot should be displayed.
For example, here is a short sample dump of a text file:

0000  20 20 20 20 20 20 20 20 54 68 69 73 20 69 73 20          This is
0010  61 20 73 61 6D 70 6C 65 20 66 69 6C 65 20 63 6F  a sample file co
0020  6E 74 61 69 6E 69 6E 67 20 74 65 78 74 20 74 6F  ntaining text to
0030  20 64 75 6D 70 2E 0D 0A 54 68 69 73 20 69 73 20   dump...This is
0040  74 68 65 20 73 65 63 6F 6E 64 20 6C 69 6E 65 20  the second line
0050  6F 66 20 74 68 65 20 66 69 6C 65 2E 0D 0A 0D 0A  of the file.....

d)  Closes the files (DOS function 3EH).

e)  Quits.
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; This is the simple "typewriter" program using procedures.

stack   segment stack
dw      1000 dup (?)

stack   ends

data    segment
data    ends

code    segment
assume  cs:code,ds:data

start   proc    far
push    ds              ; standard return address setup
mov     ax,0
push    ax
mov     ax,data         ; set up data segment
mov     ds,ax

mov     ah,5
mov     al,1
int     10h
mov     ah,3
mov     dx,0
mov     bh,1
int     10h

again:  call    getchr  ; get a keyboard character.
cmp     al,27   ; escape?
je      done    ; if done, quit.
call    upcase  ; convert to upper case.
call    putchr  ; display the character on the screen.
cmp     al,13   ; carriage return?
jne     again   ; if not, then loop.
mov     al,10   ; display a line feed.
call    putchr
jmp     short again

done:
mov     ah,5
mov     al,0
int     10h
mov     ah,3
mov     dx,0
mov     bh,0
int     10h

ret
start   endp
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; Here is a procedure to get a keyboard character into AL.
getchr  proc

mov     ah,8    ; use a DOS function.
int     21H
ret

getchr  endp

; Here is a procedure to display AL on the screen.
putchr  proc

mov     ah,2    ; use a DOS function
mov     dl,al
int     21H
ret

putchr  endp

; Here is a procedure for converting AL to upper case.
upcase  proc

cmp     al,'a'  ; below 'a'?
jb      already_upper   ; if yes, do nothing.
cmp     al,'z'  ; above 'z'?
ja      already_upper   ; if yes, do nothing.
add     al,'A'-'a'      ; convert to upper case

already_upper:
ret

upcase  endp

code    ends
end     start
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University of Texas at Dallas
COURSE NOTES FOR CS-5330
IBM PC ASSEMBLY LANGUAGE

CLASS 7

Comments

1.  Although all of the programs I have looked at have worked (more or
less), I have made some comments in some of your programs.  If you want
to read these comments, look for files on your disk with names like
PROG3.AS$ or PROG4.AS$ (or anything that ends in a '$').  These are
simply your source programs, with comments added.  The comments begin
with "***RSB***" and so are easy to find.  Of course, if I felt that no
comments were required, there are no such files on your disk.  In
general, I was very pleased with the programs I saw.

2.  Some general comments are in order, however.  First, although the
sequence line-feed/carriage-return is in theory (and mostly in
practice) equivalent to carriage-return/line-feed, I have occasionally
seen instances in which a program or a hardware device had problems
dealing with lf/cr.  Consequently, it is safer to stick to the cr/lf
sequence.

3.  Many of you have been using instructions like

CMP  AL,41H    ; CHECK FOR CAPITAL "A"
MOV  DL,32     ; MOVE SPACE INTO DL
etc.

There is nothing wrong with this, except that it makes the programs
harder to understand.  It is better to use self-evident code like

CMP  AL,'A'
MOV  DL,' '

4.  On several different occasions, I have given you different stories
about whether MS-DOS function calls preserve the CPU's registers.  To
reiterate, while I have never seen a statement in print to the effect
that MS-DOS preserves registers, it has always been my experience that
MS-DOS function calls do not affect the registers (other than those
used to pass arguments).  For that reason, I told you to assume that
registers are preserved by MS-DOS calls.  It has come to my attention,
however, that some calls change the registers.  In particular, the
"print string" function (number 9) modifies the AX register even though
it does not output any values in this register.  On my computer, using
function number 9 always results in having a dollar sign, "$" in the AL
register.  (This fact screws up at least one of your programs, when run
on my computer).  For this reason,

from now on, we will assume that MS-DOS does not
preserve registers.

This will hold even if you test the functions you are using and
determine that they preserve registers.  The reason for this
restriction is that while the DOS functions preserve certain registers
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on your machine, they might not behave this way on a different machine
or under different circumstances.

Review

In the last class, we finished up the discussion of all logical
instructions available on the 8088 microprocessor.  This included the
logical shift instructions SHR and SHL, the arithmetic shift
instructions SAR and SAL (=SHL), the rotate instructions ROR and ROL,
and the rotate through carry instructions RCR and RCL.  Pictorially, we
could represent the behavior of these instructions as follows:

SHR             0 ---> destination ---> CF

SHL, SAL       CF <--- destination <--- 0
____

|    |
SAR               '--> destination ---> CF

_________________
|                 |

ROR               '--> destination ---> CF
_________________

|                 |
ROL            CF <--- destination <--'

______________________
|                      |

RCR               '--> destination ---> CF
___________________________

|                           |
RCL               '--- destination <--- CF <--'

All of these instructions have the syntax

mnemonic destination,count

where the destination operand can be a word or byte in any addressing
mode (except immediate) and the count operand gives the number of bit
positions by which the value is to be shifted or rotated.  The count
operand is restricted to being the number 1 or the CL register.  The
most important use of these instructions is probably for fast integer
multiplication or division by two.

We continued with our discussion of the various "jump"
instructions provided by the 8088 microprocessor.  We found that the
"JMP" instruction which we had already used rather freely has several
variations.  The most important variation, other than the "plain
vanilla" JMP is the "JMP SHORT".  The JMP SHORT instruction executes as
fast as JMP, but requires one less byte in memory.  It can be used only
when the destination address is within 128 bytes of the current
address.

We found that all conditional jump instructions are SHORT jumps,
which can result in some problems with more complicated programs (in
particular, with "spaghetti code").  Several new conditional jump
instructions were discussed.  These new conditional jumps are all used
in conjunction with the CMP instruction and correspond to testing the
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conditions EQ, NE, LT, GE, GT , and LE.  For each such condition, there
are separate conditional jumps for signed and for unsigned arithmetic.

One way to avoid spaghetti code and, at the same time, make our
code easier to write, debug, and understand, is to make some use of
subroutines to modularize our code.  To this end, we discussed
procedures.  Procedures are defined using the PROC pseudo-op.
Procedures are pieces of code that execute some pre-defined function
when they are "CALLed", and then "RETurn" to immediately begin
executing the instruction after the CALL.  Procedures have their own
names and act much like procedures in higher-level languages.

We also discussed the instructions

PUSH 16-bit-register
POP  16-bit-register

which, respectively, save the contents of a register or restore the
contents of a register.  These instructions are quite frequently used
for temporary storage of values, particularly with procedure calls, so
that a procedure can preserve all of the registers it does not actually
use for returning output values.  However, only word registers can be
pushed or popped, so instructions like PUSH AL are not allowed.

The CALL, RET, PUSH, and POP instructions all operate by using the
stack, which we will now discuss.

The Stack

In our "typewriter" program homework assignment, we encountered
the use of a "text buffer" for temporarily storing information.  In
using our buffer, we employed a pointer (usually a register) which
picked out some location in the buffer as being the "current" location
-- i.e., the next position at which a byte could be stored (or, in some
of your programs, the last position at which information was stored
previously).  Every time a new item was added to the buffer, the
pointer was incremented (or decremented, depending on the program) to
point to the next position, and so forth.  When the program was finally
finished, the characters were removed from the buffer one-by-one and
printed on the printer.

This type of data structure is known as a queue.  In a queue, data
is added to the end of the buffer, but it is removed from the beginning
of the buffer.  A queue is also called a FIFO list -- a list of data
items for which the First items Input are also the First items Output.

There is a similar type of data structure, called a stack, which
is somewhat more important in microcomputing.  A stack is just like a
queue, except that the last item added to the stack is the first
removed.  The 8088 microprocessor has several built-in registers and
instructions which make using a stack much simpler than, say, using a
queue.  Effective use of the 8088 microprocessor is impossible without
the stack.

In an 8088 program, there is typically one stack used, known as
the stack.  The stack is used to restore RETurn addresses for use with
CALL instructions, and to store the values of registers saved with the
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PUSH instruction.  Arguments for procedures are also often passed on
the stack.  Some high-level languages store "local" variables for
subroutines on the stack, as opposed to "global" variables stored in
the data segment.  In any case, it is clear that the stack may be used
constantly in many programs.

The parameters of the stack (its size and position) are arbitrary,
and are decided by your program, which often initializes the stack at
the beginning and then essentially forgets about it.  The stack resides
in its own memory segment, the Stack Segment, which is pointed to by
the stack segment register, SS.  The maximum size of the stack is
arbitrary, except that it must be less than 64K.  The 8088
microprocessor itself never checks at any time whether a "stack
overflow" has occurred, unlike our clever homework program.  The
programmer, therefore, is responsible for reserving more space on the
stack than will ever be used.  The stack has its own dedicated "pointer
register", SP, to pick out the current position of the "top" of the
stack.  In actuality, the stack grows downward in memory, so the top of
the stack is always at the lowest memory location used.

Here's how the stack is actually used.  In the first place, the
entries in the 8088's stack are word values.  It is not possible to
store bytes in the stack, except insofar as they are parts of words.
When we PUSH a register, the 8088 decrements the stack pointer (SP)
twice, and stores the value of the register at SS:SP.  Thus, in the
8088, the stack pointer always points at the most recently used address
on the stack.  Conversely, when the register is POPped, the value at
the top of the stack is stored in the register and then SP is
incremented twice.  The stack is a Last In First Out data structure.
This inverse behavior of the PUSH and POP instructions explains the
rule we mentioned in the last class that registers must be popped in
reverse order of the way they were pushed.  Now that we understand more
about how the stack works, of course, we see that this rule is not
strictly accurate -- rather, it is just good advice.  If we POP the
registers in a different order, it simply means that we will have
permuted the values stored in the registers.  For example, suppose that
we would like to take the value currently in the AX register and store
it in the BX register, while simultaneously storing BX in CX and CX in
AX.  A program for that might look like this:

; PROGRAM TO CYCLICALLY PERMUTE THE AX, BX, AND CX ; REGISTERS:  FIRST,
PUSH ALL OF THE REGISTERS.

PUSH AX
PUSH BX
PUSH CX

; NOW, POP THE REGISTERS IN THE PROPER ORDER:
POP  AX   ; AX = ORIGINAL CX
POP  CX   ; CX = ORIGINAL BX
POP  BX   ; BX = ORIGINAL AX

Similarly, when you CALL a procedure, the 8088 PUSHes the return
address onto the stack and then performs a JMP to the procedure.  When
you RETurn from the procedure, the 8088 POPs the return address off of
the stack and JMPs to the return address.  There are actually two
variations of the CALL and RET instructions, corresponding to the JMP
NEAR and JMP FAR instructions.  (There is no analog to the JMP SHORT.)
For a procedure within the segment, only the offset word of the return
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address needs to be pushed onto the stack.  To call a procedure in a
different segment, however, both the segment word and the offset word
must be pushed.  The fact that both PUSHes and CALLs store values on
the stack explains the other rule for using PUSHes and POPs:  namely,
that for each PUSH there must be a POP, before any RETs occur.  This is
a good rule of thumb, although we see now that is not strictly
accurate.  For example, in some cases, we might want to store the
RETurn address on the stack using PUSHes rather than a CALL.  This
actually happens with our "template" program.  The operating system
runs our programs by executing a CALL FAR to our main procedures.  The
first act of the main procedure in our template program, however, is to
PUSH two values onto the stack:

; SET UP RETURN ADDRESS FOR TEMPLATE PROGRAM:
PUSH DS   ; SEGMENT OF RETURN ADDRESS WITHIN DOS.
MOV  AX,0
PUSH AX   ; OFFSET OF RETURN ADDRESS WITHIN DOS.

.

.

.
; RETURN TO DOS

RET  FAR

This works because when the program begins executing (i.e., before DS
has been modified by the program) DS:0 is the return address within DOS
for the program.  By default, RETurn instructions in procedures
declared with "PROC" are RET NEARs, while RETurns in PROC FARs (like
our template program) are RET FAR, so we did not explicitly have to say
RET FAR in the sample program fragment.

Although it was not mentioned in the previous class, the PUSH and
POP instructions can actually be used with any addressing mode, not
just with registers.  Two restrictions apply:  you (apparently) cannot
push an immediate value onto the stack, and you can only push words
(not bytes) onto the stack.  Thus, a more accurate syntax for PUSH and
POP would be

PUSH source
POP  source

For instance, we could use instructions like

PUSH BAR       ; PUSH THE VALUE OF BAR ONTO THE STACK.
POP  BAR[SI]   ; STORE TOP-OF-STACK AS BAR[SI].

where BAR is our standard word variable.

Let us consider a short sample program using the stack.  We will
write a recursive procedure for computing the value of N!=1*2*...*N.
In Pascal, such a program might look like this:

function factorial(n:integer):integer;
begin

if n=0 then factorial:=1
else factorial:=n*factorial(n-1)

end;
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This function is recursive, in that it CALLs itself.  In order to
compute factorial(n), the computer must first compute factorial(n-1),
etc.  However, the computer does not know this:  it thinks that it can
simply directly compute factorial(n).  When it discovers that it must
first compute factorial(n-1), however, it is halfway through the
function; so it PUSHes the environment (the local variables called "n"
and "factorial", the return address, and various variables used
internally by Pascal) onto the stack and begins executing factorial(n-
1).  Of course, during the computation of factorial(n-1), it must again
store the environment on the stack and begin to compute factorial(n-2),
etc.  Thus, the ability to perform such a calculation recursively is
very dependent on the stack.

In assembler, the program might go something like this:

; PROCEDURE TO COMPUTE N!.  WE WILL PASS BOTH INPUT AND
; OUTPUT IN THE AX REGISTER.  IF INTEGER OVERFLOW OCCURS,
; THE OVERFLOW FLAG WILL BE SET.
FACTORIAL PROC

CMP  AX,0      ; N=0?
JNE  NOT_ZERO  ; IF NOT, THEN CONTINUE.
MOV  AX,1      ; OTHERWISE, RETURN 0!=1.
JMP  DONE

; THE RECURSIVE STEP.  AT THIS POINT, WE KNOW N<>0.
; COMPUTE N! AS N*(N-1)!
NOT_ZERO:

PUSH AX        ; STORE N, SO IT WON'T BE MESSED UP
DEC  AX        ; WHEN (N-1)! IS COMPUTED.
CALL FACTORIAL ; COMPUTE (N-1)! AND STORE IN AX.
POP  BX        ; GET BACK N, BUT IN BX.
JO   DONE      ; QUIT ON ERROR.
MUL  BX        ; MULTIPLY AX BY BX, .

; EXIT POINT OF THE PROCEDURE.
DONE:

RET
FACTORIAL ENDP

Aside from the recursion, the only novel feature of this program is the
use of the MULtiply instruction, which performs an unsigned multiply of
its operand with the accumulator.  We will discuss the multiply and
divide instructions more fully later.  As it happens, 8! is 40,320 so
that 9! overflows (leaving OF set).

Accessing Files

Like the simple character I/O functions considered earlier, all
file accesses, in which data is input from files or output to files,
are managed by DOS.  However, since files operations are intrinsically
more complex than character operations, the DOS interface with your
program is also somewhat more complex.

In order to access disk files, there is a sequence of DOS calls
which must be executed more-or-less in order.  Similar sequences of
instructions are also required in many high-level languages, so let us
discuss the necessary steps before going on to find out about the DOS
functions provided to carry out these steps.
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First, we need some way to input a filename from the keyboard.
(This step is not always strictly necessary, since we might "hard-code"
a fixed filename into our programs.  However, we'll assume that we're
being flexible and therefore will input our filenames at run-time.)  A
filename is just a string, so what we would really like is some kind of
whole-string input function, just as we already have a whole-string
display function.

Second, we need some way to associate the filename, which is a
string in memory, with an actual file on the disk.  There are several
possibilities here.  If the file already exists and we simply wish to
read or rewrite parts of it, we want to open the file.  A file-open
operation is equivalent to the reset operation in Pascal.  If the file
does not exist or if we want to empty the file and then write to it,
this is a create operation.  Create corresponds to the Pascal command
rewrite.

Third, we want to move to the proper position in the file for the
particular data we are interested in.  For example, to read or write
the entire file, we would start at the beginning.  To add to the end of
the file, we would move to the end.  For "random access", we would want
to move to an arbitrary point in the file.  We might call such movement
within the file a seek operation, since it seeks the proper location
for I/O.

Fourth, we want to actually perform the desired read or write
operations.  These are equivalent to the Pascal statements read and
write (or get and put, depending on how bad the particular version of
Pascal).  We can perform as many seeks, reads, and writes as we wish
before going on the fifth step:

Fifth, and finally, when we are done we want to close the file.
File operations use up various MS-DOS resources, such as memory used
for buffers, so closing the file represents a helpful (and, in fact,
required) bookkeeping chore.  This is comparable, not surprisingly, to
the Pascal close operation.

To see how all of these steps actually fit together in a real
program, let's consider a pseudo-code version of the current homework
assignment, which "dumps" a file, in hexadecimal:

; Program to do a "file dump".
Prompt_user_to_input_filename_for_dump
Read_filename_from_keyboard

; This file must already exist if we're to read it, so we
; must open it rather than create it:

Open_the_file
If error (file doesn't exist), then JMP ERROR

; Main loop of program:
AGAIN:

Read_16_byte_record_from_file
If error (end of file, or disk read error), JMP QUIT
Display_the_16_bytes_in_hex
JMP AGAIN

QUIT:
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Close_the_file
JMP DONE

; Error exit for nonexistent file
ERROR:

Print_error_message

; Exit point of program:
DONE:

Now let's see how some of these steps correspond to MS-DOS
functions that we can really call.

DOS Functions for Files

For each of the various operations we have described, there is a
DOS function to handle it.  For now, we will only describe the
functions that our really relevant to the homework program assignment,
with other functions described next time.

DOS function 10 (0AH) is the buffered input, or string input
function.  It allows the input of an entire string at one time (as
opposed to the character-by-character input we have used already).
This function is very convenient in that it allows the use of all the
built-in editing functions of MS-DOS, like the backspace, escape,
function keys, INS, DEL, etc.  In order to use function 10, it is
necessary to first set up a buffer area in the data segment, much like
the buffer we used in our typewriter program.  Assuming that we want to
enter up to N characters in our string, the buffer must be N+2
characters long, since the first two characters have a special meaning.
The first byte, on input, must contain a value corresponding to the
maximum number of characters in the string (i.e., N).  The second byte
is meaningful only on output (i.e., after function 10 has been
executed) and contains a count of the number of characters actually
entered.  This number can be less than the maximum, since input can be
terminated either when the maximum number of characters has been
entered, or when the carriage return key is pressed.  Here is a sample
use of buffered input:

BUFSIZE EQU 32      ; LET THE FILENAME BE A MAX. 32 CHARS.
BUFFER DB      BUFSIZE
BUFLEN DB      ?
BUFSTR DB      BUFSIZE DUP (?)

.

.

.
MOV  AH,10     ; FUNCTION 10.
MOV  DX,OFFSET BUFFER
INT  21H

The definition of the buffer may seem slightly tricky at first, but
actually it's easy to understand.  The buffer as a whole begins at
BUFFER which, as mentioned before, is also a byte variable whose value
is the maximum number of characters to be entered.  We have gone out of
our way to give the second byte of the buffer a name (BUFLEN) since the
number of actual characters entered will eventually be stored there and
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we will probably need to access it.  Of course, we have also reserved
the necessary space to store the actual keystrokes beginning at BUFSTR.

Suppose that we used this function to enter a filename:  say,
"B:MYFILE.TST".  After the INT 21H instruction had executed (and we had
typed in this name), we would find that BUFFER contained 32 (as we had
assigned), BUFLEN contained 12 (the actual number of characters in
"B:MYFILE.TST"), and beginning at BUFSTR the characters "B", ":", ...,
"T", followed by various "garbage" characters.  We will find below that
the DOS function for opening a file requires the filename to be
terminated with a zero byte, just as the string print function requires
a "$" terminator.  Thus, it is prudent to go ahead and execute the
instructions

MOV  BL,BUFLEN      ; GET THE NUMBER OF CHARS. IN BUF.
MOV  BH,0           ; INTO BX.
MOV  BUFSTR[BX],0   ; TERMINATE THE STRING WITH A ZERO.

which ensure this type of termination.

DOS function 3DH is used to open an existing file, and is very
easy to use.  Into the DX register we must put the address of the
filename, terminated by zero.  In our example, the actual filename
(unlike the buffer used for DOS function 10) begins at BUFSTR.  In the
AL register goes the "file access code".  The file access code tells
what kind of access you intend to perform.  The choices for AL are:

0    File is read-only.
1    File is write-only.
2    File is read/write.

In our case, we only intend to read the file, so we might choose a file
access code of 0.  Thus, to open the file, our DOS call might look like
this:

MOV  AH,3DH         ; CHOOSE DOS FILE-OPEN FUNCTION.
MOV  AL,0           ; MAKE FILE READ-ONLY.
MOV  DX,OFFSET BUFSTR    ; SPECIFY FILENAME.
INT  21H
JC   ERROR          ; IF ERROR, GO TO ERROR ROUTINE.
MOV  HANDLE,AX      ; SAVE THE FILE HANDLE.

Unlike the simple character-I/O functions we used earlier, which always
worked, it is possible for file functions to fail and to report an
error condition when they are finished executing.  File functions have
failed if the Carry Flag is set on return.  If the carry flag is set,
the AX register contains an error code describing the type of error.
(For our immediate purposes, the type of error is of no consequence, so
we will not discuss this further now.)  If no error has occurred, the
AX register contains the file handle.  To the human, files on the disk
are designated by their names.  For most file operations (other than
open and create), however, DOS instead numbers the files with word
values called file handles, and you must use file handles to specify to
DOS which file is being operated on.  There can be several files open
at one time, and it would be inconvenient for DOS to have to fool with
the actual filename every time a file function is requested; thus the
file handle is used as a convenient means of reference.  You should
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immediately save the file handle in a word variable so you don't lose
it.

DOS function 3FH is the file read function.  It is capable of
reading a number of bytes specified by the program (but <64K) into a
buffer starting at any given position in memory.  The buffer need only
be as long as the length of the "records" that are to be read in.  The
"record length" is also loaded into the CX register, while the address
of the buffer is loaded into the DX register.  For our program, for
example, part of our data segment might look like this:

REC_LEN   EQU  16        ; RECORD LENGTH IS 16.
HANDLE    DW   ?         ; STORE THE FILE HANDLE HERE.
FILE_BUF  DB   REC_LEN DUP (?)     ; USE 16-BYTE RECORDS.

where FILE_BUF is our chosen buffer.  A read operation might look like
this:

MOV  AH,3FH         ; SELECT DOS READ FUNCTION.
MOV  BX,HANDLE      ; SPECIFY WHICH FILE TO USE.
MOV  CX,REC_LEN     ; 16-BYTE RECORDS.
MOV  DX,OFFSET FILE_BUF  ; SPECIFY BUFFER LOCATION.
INT  21H
JC   ERROR          ; IF ERROR, EXIT.

Notice that we have not used any seek operation as described earlier.
If no seek operations are performed, the file is by default accessed
sequentially -- i.e., beginning at the beginning and progressing
through the file until the end is reached.  On executing this code
fragment, we find the first 16 bytes of the file in our buffer.  On
executing it a second time, we find the second 16 bytes, etc.  The
file-read operation is very clever, in the sense that if there are less
bytes left in the file than you have specified in CX, it will simply
read a shorter record.  If no error condition exists, DOS will return
in the AX register the actual number of bytes read from the file.
Normally, of course, the AX register will contain a 16 in our example.
However, for the last record in the file, AX may be any number from 1
to 16.  If AX is ever returned as zero -- i.e., no bytes read from file
-- then the end of the file has been reached.  That is, the end of file
is detected by checking for AX=0.

DOS function 3EH is the file close operation and is the simplest
operation of all:

MOV  AH,3EH         ; CLOSE THE FILE
MOV  BX,HANDLE      ; SPECIFIED BY BX
INT  21H

The operation should always be performed before ending your program.
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PSEUDO-CODE FOR HOMEWORK PROGRAM

; Program to do a "file dump".
Prompt_user_to_input_filename_for_dump
Read_filename_from_keyboard

; This file must already exist if we're to read it, so we
; must open it rather than create it:

Open_the_file
If error (file doesn't exist), then JMP DONE

; Main loop of program:
AGAIN:

Read_16_byte_record_from_file
If error (end of file, or disk read error), JMP QUIT
Display_the_16_bytes_in_hex
JMP SHORT AGAIN

; Normal exit at end of file
QUIT:

Close_the_file

; Exit point of program:
DONE:

___________________________________________________________

DOS FUNCTION 10:  BUFFERED KEYBOARD INPUT

; Function 10 needs a buffer to store the input string in.
; Example:
BUFSIZE EQU 32      ; LET THE FILENAME BE A MAX. 32 CHARS.
BUFFER DB      BUFSIZE
BUFLEN DB      ?
BUFSTR DB      BUFSIZE DUP (?)

; Sample use of DOS function 10.
MOV  AH,10     ; FUNCTION 10.
MOV  DX,OFFSET BUFFER
INT  21H

; To use the input string from function 10 as a filename
; in file operations, the string
; must be terminated with a zero (just as the strings for
; function 9 are terminated with dollar signs).

MOV  BL,BUFLEN      ; GET THE NUMBER OF CHARS. IN BUF.
MOV  BH,0           ; INTO BX.
MOV  BUFSTR[BX],0   ; TERMINATE THE STRING WITH A ZERO.
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DOS FUNCTION 3FH:  READ A RECORD FROM THE FILE

; To read a "record", you need to know the "record length",
; in bytes.  The record length is not a characteristic of
; the file -- it is chosen by the programmer and can be
; different for every record, if desired.
REC_LEN   EQU  16
; You also need a place in memory to put the record:
FILE_BUF  DB   REC_LEN DUP (?)

; Sample use of function 3FH:
MOV  AH,3FH         ; SELECT DOS READ FUNCTION.
MOV  BX,HANDLE      ; SPECIFY WHICH FILE TO USE.
MOV  CX,REC_LEN     ; 16-BYTE RECORDS.
MOV  DX,OFFSET FILE_BUF  ; SPECIFY BUFFER LOCATION.
INT  21H
JC   ERROR          ; IF ERROR, EXIT.

; On return, AX contains the actual number of bytes read
; (usually equal to REC_LEN, but possibly less).

_________________________________________________________

DOS FUNCTION 3EH:  CLOSE A FILE

MOV  AH,3EH         ; CLOSE THE FILE
MOV  BX,HANDLE      ; SPECIFIED BY BX
INT  21H
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Comments

1.  In the previous class, I mentioned how to find (on your disk) the
comments I have appended to your programs.  Unfortunately, I didn't
quite say what I meant, and I probably left all of you with the
impression that I had no comments on your programs.  You can determine
if there are comments by checking for files with names ending in "$".
However, the comments are not in those files.  The comments are in your
.ASM files (if a .AS$ file appears on the disk), or in a file with the
extension .PCW (if a .PC$ file appears).   Sorry about that.

2.  Some of you have also been victims of another oversight of mine.
When you are writing an assembler program, you cannot just use any old
name for variables or labels (or procedures or segments, etc.).  The
macro assembler has a set of reserved words which you are not allowed
to use.  (See handout.)  Unfortunately, the assembler is so dumb that
it may not give you an error message if you use a reserved word.
Instead, it may give you dozens of errors like:  "Invalid operand",
"Extra characters in field", "End of file encountered", "Open
segments", etc.  So far, variables called "RECORD" have been a
particular problem.  Do not use these reserved words as names.

3.  We have already discussed (several times) the two rules for proper
stack use:  namely, that data is popped from the stack in reverse order
of the way it is pushed, and that all pushed data must be popped prior
to a return.  We would do well make a third rule of thumb explicit.
The third rule is this:  never JMP out of a procedure.  When a
procedure is called, the return address is pushed onto the stack.  This
return address is popped only when the RET instruction at the end of
the procedure is executed.  Therefore, if we get out of the procedure
with a JMP rather than a RET, this return address will never be popped
off of the stack, leaving a very confused program.  [If you are clever,
of course, you can explicitly remove the return address off of the
stack with a POP instruction and then use a JMP.  This is better
avoided, however, since it destroys the "block structure" of your
program.  That is, it is like re-introducing spaghetti code in spite of
using procedures to avoid it.]  In most cases, a jump out of a
procedure can be avoided by using flags to indicate error conditions on
return from the procedure.

Review

In the previous class, we covered two topics.

The first topic covered was the operation and function of the
stack, and the deeper meaning of the PUSH, POP, CALL, and RET
instructions.  We found that the stack is a data structure stored in
the memory of the computer.  Data is stored at the top of the stack
when a PUSH is performed, and is removed from the top of the stack when
a POP is performed.  For this reason, data is POPped from the stack in
reverse order of the way it is PUSHed onto the stack.  The "top" of the
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stack is actually at a lower address in memory than the "bottom" of the
stack, since the stack begins in high memory and grows downward.  There
is a dedicated CPU register, the SP register, which points to the
current top-of-stack, and the stack occupies its own dedicated segment
(pointed to by the SS register).  Your program selects the size of the
stack (i.e., the amount of memory reserved for the stack) and the
location of the stack (the value of SS and the initial value of SP).
However, if your program does not take care of the details of
initializing the stack, the operating system assigns a default stack of
limited size for your program to use.

Return addresses of procedures are also stored on the stack.  The
CALL instruction, by which procedures are activated, is actually
equivalent to the sequence of instructions

PUSH IP   ; Push the current address, as indicated by
; the Instruction Pointer register (this is
; not actually a legal instruction).

JMP  procedure

while the RET instruction, which returns from a procedure, is
equivalent to

POP  IP   ; restore the old current address -- i.e.,
; jump to the address given by the top of
; the stack.

(Of course, the JMP instruction itself is equivalent to

MOV  IP,address of procedure          )

This explains why all PUSHed data must typically be POPped before
RETurning from a procedure -- otherwise, the PUSHed data which has not
been POPed from the top of the stack will be interpreted by RET as a
return address.

We also discussed some of the DOS functions relevant to file
operations.  Speaking in general, we found that the following file
operations need to be provided by DOS:

Input a string from the keyboard.
Open a file.
Create a file.
Seek a location in the file.
Read a record from the file.
Write a record to the file.
Close the file.

Of these, we discussed the input string, the open, the read record, and
the close DOS functions.

DOS function 10 (0AH) is the buffered string input function.  It
is capable of reading entire strings from the keyboard, allowing use of
all of the MS-DOS editing keys.

DOS function 3DH is the file open functions.  It takes as input a
filename (which is a string, terminated by a zero byte) and returns a
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word-value called the file handle by which all of the other DOS
functions refer to the file.  That is, the once a file is opened, it is
referred to by number rather than by name.  This number is called the
"file handle" and should be saved as a variable, or else it will be
lost and the program won't be able to access the file again. Function
3DH is also used to specify the file access code -- i.e., whether the
file is read-only, write-only, or read/write.

DOS function 3FH is the read record function.  It reads a record -
- i.e., a certain number of bytes -- from the file and stores the
record in memory.  In order to use this function, you must specify the
file handle (that is, which file is being read), the record size (that
is, how many bytes to read), and the address in memory at which the
record is to be stored.  If there are less bytes left in the file than
indicated by the record size, just the number of bytes remaining in the
file will be read.

DOS function 3EH is the file close operation.  It is the easiest
function to use, since it is only necessary to specify the file handle
of the file to be closed.

Later in the lecture, we will discuss more of the available DOS
file functions.

More About DOS, From the User's Standpoint

So far, from the user's standpoint, we have discussed only the
crudest aspects of DOS.  For example, we have discussed the format of
filenames, we have discussed concepts like "default disk drive", and we
have discussed some of the simplest and most useful DOS commands, such
as DIR, COPY, ERASE, RENAME, TYPE, and CLS.  Now, however, I'd like to
briefly mention some other features of the operating system.

WILDCARD FILENAMES.  Many of the DOS commands accept not only
explicit filenames, such as

ERASE B:MYFILE.ASM

but also wildcard file specifications or ambiguous filenames.  An
ambiguous filename, rather than explicitly naming a certain file (like
B:MYFILE.ASM) may match a number of different filenames.  An ambiguous
filename is one which contains either or both of the "wildcard"
characters "*" and "?".  The "?" character matches any single
character, while the "*" matches a succeeding string of characters.
Here are some examples of ambiguous filename use with the DOS commands:

DIR *.TXT                Display the directory just for
all files with names like
something.TXT

ERASE *.*                Erase every file (i.e., all
files with names like
something.something)

COPY A:PROG?.* B:        Copy files like PROG3.ASM,
PROG4.asm, PROG3.BAK, etc.
from drive A to drive B

RENAME PROG?.* MYPG?.*   Rename files like PROG3.ASM
to MYPROG3.ASM
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ERASE PROG*.*            Erase files like PROG3.ASM
and PROG3.BAK, as well as
PROG454.ASM, PROGABCD.FOO,
etc.

Wildcards are not available with every command, but they can often be
timesavers.  Wilcards can also be used with some DOS functions, though
not with any we have discussed so far.

DEVICES AS "FILES".  There are two essentially different classes
of sources of input or destinations for output on computers.  The two
classes are the files and the I/O devices.  I/O devices are, of course,
things like the keyboard, the screen, the printer, the plotter, and so
forth.  There are many cases, however, in which we would like to ignore
the distinctions between these classes and simply deal with "sources of
input" or "destinations for output" in a unified way, without worrying
about the nature of the source or the destination.  For this reason,
for each I/O device MS-DOS designates a certain "filename" by which the
device can be referred to.  These names can be used just like filenames
in any DOS command for which they would be meaningful, and can be used
with the DOS file functions.  We'll see how to do this in a moment.
Among the defined device names are these:

CON       the console.  This is the keyboard on
input and the screen on output.

PRN       the printer.  This can only be used for
output.

LPTn      where n is 1, 2, or 3.  There can actually
be up to three printers, and they can be
specifically addressed with these device
names.  Usually, however, there is only one
printer, LPT1, which is also called PRN.

AUX       the serial port.  Used for both input and
output.

COMn      where n is 1 or 2.  There can actually be up
to two serial ports, and COM1 is alternately
called AUX.

NUL       the null device or bit bucket.  Output
to this device is thrown away.

Many other device drivers can be installed in the computer and the
devices accessed thereby can be referred to by means of their own
particular "filenames".

Here are some sample uses of devices as "files".  Rather than
displaying a file on the screen with

A>TYPE filename

we could "copy" the file to the screen with

A>COPY filename CON

or to the printer with

A>COPY filename PRN



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 139/361

CLASS 8

Similarly, we could create a short file by typing the input for it at
the keyboard with

A>COPY CON filename

This also works with the DOS file functions.  For example, we could use
the DOS open file function to open the file with name "CON" and use the
read record and write record functions to read from the keyboard or
write to the screen.  This works with all of the DOS file functions
discussed so far, but won't work with some that we will discuss later.
For example, we will see that there is a DOS function to erase a file
from the disk -- however, it is meaningless to erase a device name.

I/O REDIRECTION.  Many programs take their input from the keyboard
and write their output to the screen.  With such programs it is easy to
redirect the I/O to other files or devices.  To redirect input so that
it comes from a file or a device rather than from the keyboard, we
append "<name" (where name is the name of the file or the device) when
inputting the name of the program from the DOS command line.  When
redirecting output to a file or device, we append ">name".  As a simple
example, suppose that you wanted to print the directory of your disk on
the printer:  you might say

A>DIR >PRN

To output the directory instead to a file called "MYDIR.TXT", you might
say

A>DIR >MYDIR.TXT

There are also DOS functions that allow redirection of any I/O (not
just the console or the screen), but we will not discuss these for some
time.

More DOS File Functions

The previously alluded-to DOS file functions which we have not yet
discussed (of those that we intend to discuss at present) are the
create file, seek, and write record functions.  For future reference,
we will also discuss the DOS delete file function and rename file
function.

DOS function 3CH creates a file.  Creation of a file is similar to
opening the file, except that the file need not already exist.  The
create-file operation results in an entirely new file being added to
the disk's directory, and then being opened for use.  If the file
already exists, attempting to use the create-file function results in
emptying the file and then opening it for use.  Thus, the create-file
function always results in an empty file being opened.  Use of the
create function is similar to the use of the open function, except that
as input a file attribute parameter is passed in CX rather than a file
access code in AL.  The file attribute parameter pertains to various
features of MS-DOS that we have not discussed, so we will simply always
set it to zero, indicating that none of the special available
attributes is selected.  Here is a sample use of create:
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; Here is a hard-coded filename.  We could, of course, input
; a filename from the keyboard using DOS function 10:
FILENAME DB 'B:TEST.TST',0
; Storage location for the file handle:
HANDLE   DW    ?

.

.

.
; Sample use of DOS function 3CH:

MOV  AH,3CH
MOV  DX,OFFSET FILENAME  ; select the filename.
MOV  CX,0           ; set no special file attributes.
INT  21H
JC   ERROR          ; if error, go to error routine.
MOV  HANDLE,AX      ; save the returned file handle.

As usual, the function returns with the Carry Flag set if an error
occurs, and with the file handle in AX if no error occurs.  The handle,
as usual, should be saved for future use.

DOS function 42H is the seek function.  Whenever you access files
with MS-DOS, MS-DOS maintains a variable, the file pointer, which
indicates the current byte of the file being accessed.  When a file is
opened or created, this pointer is automatically set to "point" at the
very first byte of the file.  When you read or write a record to the
file, the pointer is incremented to point at the next record.  This is
fine (and very convenient) if you are accessing the file sequentially -
- i.e., a record at a time, in the same order as they are stored in the
file -- but it is not so convenient if you want to access records
randomly -- i.e., in some other order.  The DOS seek function, however,
allows you to set the file pointer to any convenient value and
therefore to access the records in any order you please.  MS-DOS files
are not limited to a size of 64K bytes, so a word-size file pointer
would not be big enough for general purposes.  MS-DOS therefore employs
a doubleword file pointer.  Consequently, when you use the seek
function, the new file pointer must be specified by using two CPU word-
size registers in conjunction.  These pairs of registers do not specify
a segment:offset -- rather, they specify a full (signed) INTEGER*4 file
pointer.  In the case of DOS function 42H, the desired new file-pointer
is passed in the CX:DX register pair, with CX containing the most
significant word of the pointer and DX containing the least significant
word.  Actually, the seek function is more flexible than this.  It is
capable of interpreting CX:DX as either the new value of the file
pointer, or as an offset from the current position or from the end of
the file.  The interpretation is controlled by the input value of the
AL register:

AL=0      Use CX:DX as the new file pointer.
AL=1      Add CX:DX to the current file pointer to get

the new file pointer.
AL=2      Move CX:DX bytes past the end of the file.

The seek function also returns the true value of the new file pointer
(that is, not an offset as in AL=1 or AL=2) in the DX:AX register pair.
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; Sample uses of DOS function 42H:

; Move to position 100 in the currently open file:
MOV  AH,42H         ; select seek function.
MOV  BX,HANDLE      ; select the file used.
MOV  CX,0           ; most significant word of

; doubleword value 100.
MOV  DX,100         ; least significant word of

; doubleword value 100.
MOV  AL,0           ; use CX:DX as the new pointer.
INT  21H
JC   ERROR          ; if error, then go elsewhere.

; Move to end of file -- that is, select an offset of
; zero from the end of the file:

MOV  AH,42H         ; select seek function.
MOV  BX,HANDLE      ; select the file used.
MOV  CX,0           ; most significant word of zero.
MOV  DX,0           ; least significant word of zero.
MOV  AL,2           ; select "offset from end of file"

; interpretation of CX:DX.
INT  21H
JC   ERROR          ; error exit.

; Backspace:  Move backwards one position in the file --
; i.e., use an offset of -1 from the current file pointer:

MOV  AH,42H         ; select seek function.
MOV  BX,HANDLE      ; select the file used.
MOV  CX,-1          ; most significant word of -1.
MOV  DX,-1          ; least significant word of -1.
MOV  AL,1           ; select "offset from current

; pointer" interpretation of CX:DX.
INT  21H
JC   ERROR          ; error exit.

The only possibly tricky point is in the calculation of the most- and
least-significant words which are to be stored in CX and DX.  For
example, if CX:DX=-1 then CX=-1 and DX=-1 (not CX=0 and DX=-1).

DOS function 40H is the write record function.  Its calling
sequence is identical to that of function 3FH, the read record
function.  Here is a sample use of the write record function:

; Write a record of length 128 bytes from the buffer called
; "BUFFER" to the file:

MOV  AH,40H         ; select write-record function.
MOV  CX,128         ; write a record of 128 bytes.
MOV  DX,OFFSET BUFFER    ; specify where the data is.
MOV  BX,HANDLE      ; specify the file involved.
INT  21H
JC   ERROR          ; error exit.

As with the read record function, on return the AX register contains a
count of the number of bytes actually written.  This may be less than
the number specified by the CX register if the disk has become full
during the write operation.  This is, of course, an error condition,
even though it is not signalled by the Carry Flag being set.
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There are a number of "file handles" permanently assigned by the
operating system to I/O devices rather than to disk files.  If desired,
the read-record and write-record DOS functions can be used with these
dedicated file handles (rather than with file handles obtained from
open and create operations) to obtain I/O on various peripheral
devices.  I/O devices do not have to be explicitly "opened" and
"closed" as files do.  (Although, as we have already seen, there is
also a series of "filenames" that could be used to "open" devices and
get file handles for them.)  Here are the permanently assigned file
handles:

0         Standard input device, normally the
keyboard.

1         Standard output device, normally the
screen.

2         Standard error output device (the screen).
3         Standard auxiliary device (the serial

port).  This handle may be used for either
input or output.

4         Standard printer device.

For example, instead of using the normal "print string" function
(number 9) of DOS, we could output a string to the "standard output
device" as follows:

; A string:
STRING DB 'This is a test string',13,10

; Alternate print-string function.
MOV  AH,40H    ; select record-output function.
MOV  BX,1      ; handle of standard output device.
MOV  DX,OFFSET STRING
MOV  CX,23     ; the length of the string.
INT  21H

This technique has the advantage (over function 9) that we do not need
to terminate our strings with "$", but we do have to know the length of
the string.  Actually, although we have specified explicitly here that
there are 23 bytes in the string, there is a slightly tricky way that
we can get the assembler itself to figure out the length of the string
for us.  Suppose that instead of the data declaration shown above we
have the following:

; Two strings:
STRING1 DB 'This is the first test string',13,10
STRING2 DB 'This is the second test string',13,10
DUMMY   DB ?   ; a dummy declaration, not actually used.

Now, when we use a word like "STRING1", the assembler knows that in
reality this represents an address, but also that STRING1 has the
"attribute" of being a byte variable.  Thus when we have an instruction
like

MOV  AL,STRING1
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the assembler knows that since STRING1 is a byte variable we must mean
to use the byte value stored at STRING1 rather than the address of
STRING1.  Also, however, recall that we are able to perform limited
arithmetic using STRING1, such as

MOV  AL,STRING1+1

which means:  load AL using the value of the byte after the STRING1.
That is, STRING1+1 is interpreted as still being a byte variable, but
at a slightly different address.  If, however, we did something like

MOV  AL,STRING2-STRING1

the assembler does something different.  It subtracts the addresses of
the two variables, as we might expect, but it also cancels out the
"byte variable" attribute.  That is, STRING2-STRING1 is a number rather
than a byte variable.  In fact, it is a number exactly equal to the
length of STRING1. Because of this fact, if we are tricky, we could
write code sequences like this:

; Display STRING1 on screen and STRING2 on printer.
; First, STRING1:

MOV  AH,40H    ; select record-output function.
MOV  BX,1      ; handle of standard output device.
MOV  DX,OFFSET STRING1
MOV  CX,STRING2-STRING1  ; the length of the string.
INT  21H

; Next, STRING2:
MOV  AH,40H    ; select record-output function.
MOV  BX,2      ; handle of standard printer.
MOV  DX,OFFSET STRING2
MOV  CX,DUMMY-STRING2    ; the length of the string.
INT  21H

DOS function 41H is used to delete files from the directory of the
disk.  The file to be deleted must not be open, and is specified by
giving the address of the filename, terminated by a zero.  Example:

; Erase the file B:FOO.BAR
FILENAME DB 'B:FOO.BAR',0

.

.

.
MOV  AH,41H         ; select delete file function.
MOV  DX,OFFSET FILENAME  ; select the file.
INT  21H
JC   ERROR          ; as usual, error exit.

DOS function 56H, the rename file function, is also rather easy to
use.  Of course, the arguments of this function are the file's old name
(which is stored in the DX register), and the file's new name (which is
stored in the DI register).  There is one slightly tricky aspect, in
that the old name of the file is in the Data Segment (pointed to by
DS), while the new name is in the Extra Segment (pointed to by ES). As
an example, to change the name of B:FOO.BAR to PIFFLE.BAK, we might
have the following:
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; Old name of file:
OLDNAME DB 'B:FOO.BAR',0
; New name of file:
NEWNAME DB 'PIFFLE.BAK',0

.

.

.
; First, fiddle with the segment registers since our
; new name for the file is in the Data Segment:

PUSH ES             ; save old ES.
PUSH DS             ; make ES
POP  ES             ; equal to DS.

; Now, actually do the rename:
MOV  AH,56H         ; select DOS rename file function.
MOV  DX,OFFSET OLDNAME
MOV  DI,OFFSET NEWNAME
INT  21H

; Now fix up the ES register:
POP  ES

There are, of course, many other DOS functions, of which we will
discuss several in later lectures.

ASSIGNMENT:

1.  Read in the textbook, beginning with the section titled "Macro
Pseudo-Ops" in the middle of p. 39, and continuing until the end of
section 2.6.

2.  In your previous homework programs, turn all of your code which is
suitable into procedures which can be individually assembled into
linkable .OBJ files.  In particular, you should do this at least for
your code to capitalize a byte and for your procedure to display the
hexadecimal equivalent of a byte.

3.  In your previous homework programs, turn all of your code which is
suitable into macros.  For example, you might have macros to display a
character on the screen, display a message on the screen, open and
close files, etc.  You might also make macros for reading and writing
records.  (You need not make any macros for code already in a
procedure, however, unless you want to.)

4.  Using these procedures and macros (almost no additional programming
should be necessary) write a program which converts WordStar text files
to ASCII text files.  WordStar text differs from regular ASCII text in
three ways:  First, even though the ASCII standard defines only the
codes from 0-127, Wordstar also uses the codes from 128-255.  It does
this by setting the most significant bit of some of the normal ASCII
codes to one.  Thus, we must clear the most significant bit of every
character.  Second, WordStar embeds printing control characters in the
text.  Printing control characters are codes ASCII 0-31.  Thus, these
bytes (not including 8, 9, 10, 12, and 13 -- the backspace, tab, line
feed, form feed, and carriage return) should be "filtered" out of the
text.  Third, Wordstar embeds "dot commands" in the text, also to
control printing.  A dot command is a line of text which begins with a
".".  Dot commands should therefore be filtered out as well.  A program
to do all of this goes something like this:
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a) Prompt the user to input two filenames -- one of which is an
input file (containing text in WordStar format) and the other of
which is an output file (containing text in ASCII format).

b) Open the input file and create the output file.

c) For each byte in the input file do the following:

i.  Read the byte.
ii.  Clear the high bit of the byte.
iii.  If the byte is a control character (other than the

exceptions listed above) go to step i.
iv.  If the byte is the first byte of the line (i.e., the

first byte after a line feed) and is a ".", then ignore
the rest of the input line (until a line feed is
encountered).

v.  Write the byte to the output file.

d) Close both files.

Macros

As an alternative to writing "spaghetti code", we have found that
our programs can be "modularized" -- and hence be made easier to write,
debug, and understand -- by writing "procedures", which can be called
again and again, even though the code for the procedure appears just
once in the program.

Procedures do have some drawbacks, however.  For one thing, there
is a certain amount of overhead (in terms of execution time) involved
in calling a procedure.  According to Appendix C of the text, the CALL
and RET instructions together (as we have been using them) require 43
clock cycles (or nearly 10 microseconds) to execute.  For many
purposes, this amount of time is totally negligible.  For others, such
as an operation carried out inside a loop which we want to iterate many
times, very quickly, a "wasted" 10 microseconds is dramatically more
important.

Another drawback which is probably more important for us, is that
even assembler code consisting mostly of CALLs to procedures is not
really that understandable.  It is much better than straight spaghetti
code, of course, but that isn't saying much.

Let us consider a very simple example of the latter point.
Suppose that in writing our programs we get tired of continually typing
in the sequence of instructions

MOV  DL,character
MOV  AH,2
INT  21H

to display a character on the screen and decide that it would be
preferable to have a procedure called "PUTCHR" to display characters on
the screen.  Actually, we have already seen the PUTCHR procedure in the
past; it was designed to accept a character in the AL register and
display it:
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MOV  AL,character
CALL PUTCHR

Now, it can hardly escape our notice that the latter sequence is
scarcely shorter or more understandable than the former.  Apparently,
modularity isn't that useful when we get down to instruction sequences
that are too short.  It would be better if would could somehow specify
both the instruction sequence we want and the arguments for it in the
same line.  For example, if we could say something like

PUTCHR    character

it would clearly be much better.

Actually, there is a way to do this, and it involves something
called "macros".  First, let's see how to define and use macros, and
then let's discuss how macros differ from procedures.  A macro which
works as we suggested above can be defined as follows:

; A macro to display a character on the screen:
PUTCHR MACRO CHARACTER

MOV  DL,CHARACTER   ; get ready to display the char.
MOV  AH,2           ; with DOS function 2.
INT  21H
ENDM

The syntax of use of a macro is exactly as suggested above.  To display
a carriage-return/line-feed sequence we could just do:

PUTCHR 13      ; display a carriage return.
PUTCHR 10      ; display a line feed.

However, this isn't good only for "immediate" values:  we could also do
things like

PUTCHR AL      ; display the char. in AL.
PUTCHR FOO     ; display the char. in the var. FOO.
PUTCHR FOO[SI] ; display the SI-th char. in array FOO.

The definition of a macro differs in several ways from that of a
procedure, of which the most obvious is that the PROC and ENDP pseudo-
ops are replaced by MACRO and ENDM pseudo-ops.  Another feature of
macros is that they can have arguments.  The string "CHARACTER"
appearing twice in the macro definition is an argument of the macro.
In use, the string "CHARACTER" is simply replaced by whatever appears
after the word "PUTCHR".  Thus, in

PUTCHR    13

the string "13" replaces each occurrence of "CHARACTER" in the body of
the macro.  That is, during assembly, "PUTCHR 13" is simply replaced by

MOV  DL,13   ; get ready to display the char.
MOV  AH,2           ; with DOS function 2.
INT  21H
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Macros can also have two or more arguments, separated by commas.

In reality, the significant difference between macros and
procedures is the lack of a "RET" instruction in the macro definition,
and the lack of a "CALL" when the macro is actually used.  Macros
differ from procedures in that they are assembled "inline".  That is,
every place in the program that the macro is used, the assembler copies
in all of the macro's code.  If we use the macro called "PUTCHR" 17
times in the program, the three instructions which constitute PUTCHR
will also appear 17 times in the program.  The code of a procedure, on
the other hand appears just once.  Thus, macros do not have the
execution-time overhead of procedures (no 43 clock cycles for a CALL
and a RET), but they do have a memory overhead since their code is
copied many times.  In practice, short code sequences are often turned
into macros, while long code sequences are often turned into
procedures.

In the next lecture, we will see many more examples of macros and
the pseudo-ops which help in defining macros.
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List of "Reserved" Words in MASM

Strictly speaking, these words are not reserved, but simply (often)
misinterpreted by the assembler if used as names of variables or as
labels.  The assembler will usually not give you any good indication of
your error and, indeed, can give you dozens of inexplicable error
messages like "Open segments", "Invalid operand", "Extra characters in
field", "End of file encountered", etc., if you use the reserved words
as variable names or labels.  This list given below is not necessarily
complete.

All 8088 instrucion mnemonics
AAA    AAD    AAM    AAS    ADC    ADD    AND    CALL
CBW    CLC    CLD    CLI    CMC    CMP    CMPS   CMPSB
CMPSW  CWD    DAA    DAS    DEC    DIV    ESC    HLT
IDIV   IMUL   IN     INC    INT3   INT    INTO   IRET
JA     JAE    JB     JBE    JC     JCXZ   JE     JG
JGE    JL     JLE    JMP    JNA    JNAE   JNB    JNBE
JNC    JNE    JNG    JNGE   JNL    JNLE   JNO    JNP
JNS    JNZ    JO     JP     JPE    JPO    JS     JZ
LAHF   LDS    LEA    LES    LOCK   LODS   LODSB  LODSW
LOOP   LOOPE  LOOPNE LOOPNZ LOOPZ  MOV    MOVS   MOVSB
MOVSW  MUL    NEG    NOP    NOT    OR     OUT    POP
POPF   PUSH   PUSHF  RCL    RCR    REPE   REPNE  REPNZ
REPZ   RET    ROL    ROR    SAHF   SAL    SAR    SBB
SCAS   SCASB  SCASW  SHL    SHR    STC    STD    STI
STOS   STOSB  STOSW  SUB    TEST   WAIT   XCHG   XLAT
XOR

All 8087 instruction mnemonics
F2XM1   FABS    FADD    FADDP   FBLD    FBSTP   FCHS
FCLEX   FCOM    FCOMP   FCOMPP  FDECSTP FDISI   FDIV
FDIVP   FDIVR   FDIVRP  FENI    FFREE   FIADD   FICOM
FICOMP  FIDIV   FIDIVR  FILD    FIMUL   FINCSTP FINIT
FIST    FISTP   FISUB   FISUBR  FLD     FLD1    FLDCW
FLDENV  FLDL2E  FLDL2T  FLDLG2  FLDLN2  FLDPI   FLDZ
FMUL    FMULP   FNCLEX  FNDISI  FNENI   FNINIT  FNOP
FNSAVE  FNSTCW  FNSTENV FNSTSW  FPATAN  FPREM   FPTAN
FRNDINT FRSTOR  FSAVE   FSCALE  FSQRT   FST     FSTCW
FSTENV  FSTP    FSTSW   FSUB    FSUBP   FSUBR   FSUBRP
FTST    FWAIT   FXAM    FXCH    FFREE   FXTRACT FYL2X
FYL2PI



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 149/361

HANDOUT

Pseudo-Ops
ASSUME  COMMENT DB      DD      DQ      DT      DW
ELSE    END     ENDIF   ENDP    ENDS    EQU     EVEN
EXTRN   GROUP   IF      IF1     IF2     IFB     IFDEF
IFDIF   IFE     IFIDN   IFNB    IFNDEF  INCLUDE LABEL
NAME    ORG     PAGE    PROC    PUBLIC  RECORD  SEGMENT
STRUC   SUBTTL  TITLE

Operators (NOT in alphabetical order)
MOD     SHL     SHR     AND     OR      XOR     NOT
EQ      NE      LT      GT      LE      GE      SEG
OFFSET  TYPE    SIZE    LENGTH  PTR     SHORT   THIS
HIGH    LOW

Registers (NOT in alphabetical order)
AH  BH  CH  DH  AL  BL  CL  DL  AX  BX  CX  DX  SI  DI
BP  SP  CS  DS  ES  SS



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 150/361

HANDOUT

DOS FUNCTION REFERENCE SHEET (INT 21H)
NOTE:  filenames are specified in ASCIZ format.  They are ASCII
character strings, terminated with a zero byte.  All file functions
(3CH and above) return with CF set on error.

AH=1H   Input one character from the keyboard (with echo).
OUTPUT: AL=ASCII code of the character.

AH=2H   Display one character on the screen.
INPUT:  DL=ASCII code of the character.

AH=5H   Print one character on the printer.
INPUT:  DL=ASCII code of the character.

AH=8H   Input one character from the keyboard (no echo).
OUTPUT: AL=ASCII code of the character.

AH=9H   Display a character string on the screen.
INPUT:  DS:DX=segment:offset of the start of the

string (which is terminated with "$").
AH=0AH  Input a character string from the keyboard.

INPUT:  DS:DX=segment:offset of a buffer.  If N is the
maximum allowable length of the input string,
then the buffer must be N+2 bytes long and the
first byte must contain the value N.

OUTPUT: Location N+1 of the buffer contains the actual
number of input characters, and the string is
in the buffer beginning at location N+1.

AH=3CH  Create a new file (or clear an old one).
INPUT:  DS:DX=segment:offset of the ASCIZ filename.

CX=attribute word of the new file (normally 0).
OUTPUT: AX=file handle.

AH=3DH  Open an existing file.
INPUT:  DS:DX=segment:offset of the ASCIZ filename.

AL=file access code (0=read-only, 1=write-only,
2=read/write).

OUTPUT: AX=file handle.
AH=3EH  Close an open file.

INPUT:  BX=file handle.
AH=3FH  Read a record from a file (or a device).

INPUT:  BX=file handle.  CX=record size.  DS:DX=start
of the buffer into which data will be read.

OUTPUT: AX=number of bytes actually read into buffer.
AH=40H  Write a record to a file (or a device).

INPUT:  Same as with AH=3FH.
OUTPUT: AX=number of bytes actually written to disk.

AH=41H  Delete a file from the disk.
INPUT:  DS:DX=segment:offset of ASCIZ filename.

AH=42H  Seek a given location in a file.
INPUT:  BX=file handle.  CX:DX=doubleword offset in

bytes.  AL=interpretation of offset (0=from
beginning of file, 1=from current position,
2=from end of file).

OUTPUT: DX:AX=doubleword pointer after move.
AH=56H  Rename a disk-file.

INPUT:  DS:DX=segment:offset of the old ASCIZ
filename.  ES:DI=segment:offset of the new
ASCIZ filename.
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ASSIGNMENT:

1.  Read in the textbook, beginning with the section titled "Macro
Pseudo-Ops" in the middle of p. 39, and continuing until the end of
section 2.6.

2.  In your previous homework programs, turn all of your code which is
suitable into procedures which can be individually assembled into
linkable .OBJ files.  In particular, you should do this at least for
your code to capitalize a byte and for your procedure to display the
hexadecimal equivalent of a byte.

3.  In your previous homework programs, turn all of your code which is
suitable into macros.  For example, you might have macros to display a
character on the screen, display a message on the screen, open and
close files, etc.  You might also make macros for reading and writing
records.  (You need not make any macros for code already in a
procedure, however, unless you want to.)

4.  Using these procedures and macros (almost no additional programming
should be necessary) write a program which converts WordStar text files
to ASCII text files.  WordStar text differs from regular ASCII text in
three ways:  First, even though the ASCII standard defines only the
codes from 0-127, Wordstar also uses the codes from 128-255.  It does
this by setting the most significant bit of some of the normal ASCII
codes to one.  Thus, we must clear the most significant bit of every
character.  Second, WordStar embeds printing control characters in the
text.  Printing control characters are codes ASCII 0-31.  Thus, these
bytes (not including 8, 9, 10, 12, and 13 -- the backspace, tab, line
feed, form feed, and carriage return) should be "filtered" out of the
text.  Third, Wordstar embeds "dot commands" in the text, also to
control printing.  A dot command is a line of text which begins with a
".".  Dot commands should therefore be filtered out as well.  A program
to do all of this goes something like this:

a) Prompt the user to input two filenames -- one of which is an
input file (containing text in WordStar format) and the other
of which is an output file (containing text in ASCII format).

b) Open the input file and create the output file.
c) For each byte in the input file do the following:

i.  Read the byte.
ii.  Clear the high bit of the byte.
iii.  If the byte is a control character (other than the

exceptions listed above) go to step i.
iv.  If the byte is the first byte of the line (i.e., the

first byte after a line feed) and is a ".", then ignore
the rest of the input line (until a line feed is
encountered).

v.  Write the byte to the output file.
d) Close both files.
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University of Texas at Dallas
COURSE NOTES FOR CS-5330
IBM PC ASSEMBLY LANGUAGE

CLASS 9

Comments

1.  On the use of = in place of EQU.  Because it's not clear to me from
the homework problems if many of you actually understood the
distinction between these two, let me say a couple of words about it.
EQU gives a constant value a symbolic name, so that wherever the
constant might be used in the source program, the symbolic name can be
used instead.  For example, the statement

MYCONSTANT EQU 5

means that instead of using the constant 5 in the source program we can
instead use the name MYCONSTANT.  Once this EQU is used, the value of
MYCONSTANT is fixed:  it will always be replaced by 5, wherever the
assembler finds it.  The = pseudo-op is used in much the same way,

MYCONSTANT = 5

except that the value of MYCONSTANT is not fixed in a certain sense.
The value of MYCONSTANT can be changed by some pseudo-ops and, in
particular, by later = pseudo-ops.  All such changes in the value of
MYCONSTANT occur at assembly time, since this is when the assembler
interprets the pseudo-ops.  Thus, it does not really make sense to talk
about the program being able to change the value of MYCONSTANT, since
the program can only affect quantities that exist at run-time.  This
distinction is not trivial, since misunderstanding it can result in a
program that does not work.  For one thing, the = pseudo-ops take
affect in the order in which the assembler encounters them, and not in
the order in which the program would encounter them as it was
executing.  For example, if we had

MYCONSTANT = 5
MOV  CX,15

AGAIN:
MYCONSTANT = MYCONSTANT+1

LOOP AGAIN

this would result in MYCONSTANT having the value 6 (since the assembler
only encounters 2 ='s) rather than 20.

2.  Please DO NOT ever (on purpose) turn in a program that will crash.
At the very least, if you feel compelled to do this, remove the .EXE
file from the disk, so that I can't unwittingly run the program.  If
your program crashes my computer it puts me in quite a bad mood.  (Of
course, accidents do happen, and may be forgiven, but I don't have to
like it.)

3.  In the homework assignment, cross out part 2:  "convert your code
into procedures".  We won't get to this today.  However, you still have
to do parts 1, 3, and 4.
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4.  In the previous lecture I was asked where macros must be defined in
the program and I thoughtlessly answered "anywhere".  In fact, macros
should be defined before they are used.  Thus, the beginning of the
program is a good place for them.

Review

In the previous class we discussed various features of MS-DOS that
we had skipped past previously.  One DOS feature discussed was
ambiguous filenames.  We discovered that there are two "wildcard"
characters which can often be included in filenames to indicate that
some DOS command is to work on an entire set of files rather than on
just one explicitly-named file.  The legal wildcard characters are the
"?", which matches any single character, and the "*", which matches any
string.  Thus, for example,

DIR *.TXT

would display a directory of just the .TXT files on the disk.

Another new DOS feature was the accessing of devices by means of
their "filenames".  Each I/O device attached to the system has a "name"
(or possibly several names) like a file has a filename.  More
interesting, devices can be used as sources or destinations for many
DOS commands that we have previously only seen used on files.  For
example, we could use the DOS "COPY" command to copy a file to a file,
or a file to a device, a device to a file, or a device to a device.
Some of the defined device names are CON (the screen and keyboard), PRN
(the printer), and NUL (the "bit bucket").  These names can be used not
only with DOS commands, but also with DOS file functions.  The DOS
"open file" function, for example, can be used to prepare a file for
I/O, or to prepare a device for I/O, and the DOS "read record" and
"write record" functions can subsequently actually perform this I/O.

I/O redirection was the final DOS feature discussed.  With I/O
redirection, output intended for one file (or device) can be redirected
to another, or input intended to come from a file (or device) can be
redirected to another.  So far (and for the immediate future) only
redirection of output intended for the screen, or input from the
keyboard is considered.  With most programs that send output to the
screen, the output can be redirected to a file (or device) by appending
">filename" to the DOS command line.  Thus,

DIR >MYFILE

stores the directory display that would normally appear on the screen
instead in the file MYFILE.  Similarly, programs that normally take
input from the keyboard, like EDLIN or DEBUG, can instead take input
from a file by appending "<filename" to the DOS command line.

We also discussed further DOS file functions.  Five functions were
discussed:  3CH, the create file function; 42H, the seek function; 40H,
the write record function; 41H, the delete file function; and 56H, the
rename file function.  Because the handout reference sheet discusses
all of these functions, there is no need to elaborate on them further.
I would like to emphasize once again, however, that you should never
delete an open file.
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We found that as well as built-in filenames for devices, DOS also
has a set of predefined file handles for devices.  The predefined file
handles can be used in any situation in which a real file handle is
used, except that there is never any need to open, create, or close the
"files" associated with these handles.  The predefined handles are:  0
(the standard input device), 1 (the standard output device), 2 (the
standard error device), 3 (the standard auxiliary device), and 4 (the
standard printer).

Finally, we began discussing macros.  Like a procedure, a macro is
a sequence of instructions grouped together and given a name.  The
sequence of instructions forming a macro is executed by giving the name
of the macro, much like a procedure is executed, except that a macro is
not CALLed, nor does a macro end with a RETurn.  The reason macros are
not called is that they are executed inline -- that is, wherever the
assembler finds a use of the macro, it simply sticks all of the source
code for the macro into the program at that point.  Here is an example
of a definition of a macro to get a character from the keyboard and
store it in AL:

GETCHR    MACRO
MOV  AH,8
INT  21h
ENDM

Actually using the macro in an assembler program would look something
like this:

.

.

.
AGAIN:

GETCHR              ; get a keyboard character.
CMP  AL,27          ; ESC?

.

.

.

When this code is assembled, the assembler "expands" the macro, giving
an actual code sequence of

.

.

.
AGAIN:

MOV  AH,8
INT  21h
CMP  AL,27          ; ESC?

.

.

.

Macros have the advantage over procedures that they execute more
quickly, but the disadvantage that they use more memory.  They have,
however, one other very crucial advantage -- they can take arguments.



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 161/361

CLASS 9

Here is an example of a macro to display a character on the screen.
This macro takes an argument, namely the character to be displayed:

PUTCHR    MACRO     CHARACTER
MOV       DL,CHARACTER
MOV       AH,2
INT       21h
ENDM

When the macro is "expanded", every occurrence of the variable
(CHARACTER) is replaced by the actual argument.  Thus,

PUTCHR    'a'

expands to

MOV       DL,'a'
MOV       AH,2
INT       21H

Indeed, a more reasonable definition of the GETCHR macro would be

GETCHR    MACRO     CHARACTER
MOV       AH,8
INT       21H
MOV       CHARACTER,AL
ENDM

since we would then be able to specify a destination for the character
other than AL.  The ability of macros to accept arguments is extremely
important, since it is the key to writing assembly language programs
that are partially understandable.  Therefore, we will now spend a lot
of time discussing macros.

More About Macros

The best way of seeing the value and use of macros is probably by
example.  Therefore, let's see some more examples of macros.

PRINT STRING.  Like the PUTCHR macro, which displays a character,
we might introduce a DISPLAY macro, which displays a string.  Such a
macro might go something like this:

DISPLAY   MACRO     MESSAGE
MOV       AH,9
MOV       DX,OFFSET MESSAGE
INT       21H
ENDM

In use, we could write, for example,

SIGN_ON   DB   'THIS IS A TEST',13,10,'$'
.
.
.
DISPLAY   SIGN_ON
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which would then display the indicated message.

"NEAR" CONDITIONAL JUMPS.  As we have discovered, all of the
conditional jump instructions which we must use so frequently are SHORT
jumps.  That is, their destination addresses must be within 128 bytes
of the address at which the jump is executed.  In many cases this is
all right, but when we start getting "relative jump out of range"
errors, we usually must deal with them very clumsily.  This difficulty
can be avoided by defining macros that act like conditional jumps, but
make NEAR jumps rather than SHORT jumps.  Let us explicitly consider
just the JC instruction -- all other conditional jumps being very
similar.  A JC instruction looks like

JC   address

where the address operand is a nearby label.  We will define a macro
JMPC whose use

JMPC address

is almost identical to that of JC, but results in a NEAR jump.  (I say
"almost" identical, since it is actually more flexible in ways we will
discuss in later lectures.)  We would like the JMPC macro to expand
something like this:

JNC  NO_CARRY
JMP  address

NO_CARRY:

There is a slight problem with this in that if we use the JMPC macro
several times in our program, the label NO_CARRY will appear many times
and the assembler will give us error messages to the effect that the
label NO_CARRY is "multiply defined".  Fortunately, MASM provides us
with a pseudo-op to overcome this difficulty.  The LOCAL pseudo-op
specifies that a certain symbol is "local" to the macro.  That is, that
the symbol has a meaning only inside of the macro, and can be re-used
as desired in the rest of the program.  The general syntax of the LOCAL
pseudo-op is

LOCAL     symbol list

and the LOCAL statement must appear as the first line of the macro
definition (after MACRO itself).  For instance, in the macro

HELLO     MACRO     MESSAGE,CHARACTER
LOCAL     SAM,JANET,MORNING

.

.

.
ENDM

the symbols SAM, JANET, and MORNING (as well as the arguments MESSAGE
and CHARACTER) are all local to the macro HELLO.  In our example, the
JMPC macro would therefore be defined as

; a "NEAR" conditional jump-on-carry macro:
JMPC MACRO ADDRESS
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LOCAL NO_JUMP
JNC   NO_JUMP
JMP   ADDRESS

NO_JUMP:
ENDM

In practice, one could also define such near-jump macros for all of the
other commonly used conditional jumps and use them in place of a true
conditional jump whenever necessary.  Thus, there would be a lot of
macros like JMPC, JMPNC, JMPZ, JMPCXZ, etc.

A different approach to simply defining a JMPccc macro for each
Jccc instruction is to try and define a single macro that handles all
possible cases.  This might be desirable since there are 31 different
conditional jump instructions, and we don't want to define 31 different
JMPccc macros.  We can cover all possible cases with just one macro by
employing the & operator.  The & operator is used in macros to
concatenate or join together strings.  Consider the following macro:

; "Universal" conditional jump macro:
JP   MACRO     JP_TYPE, ADDRESS

LOCAL     NO_JUMP,YES_JUMP
J&JP_TYPE YES_JUMP
JMP       SHORT NO_JUMP

YES_JUMP:
JMP       ADDRESS

NO_JUMP:
ENDM

Here are some sample invocations of JP:

JP   C,AGAIN        ; jump, if CF=1, to label AGAIN.
JP   NZ,AGAIN       ; jump, if ZF=0, to AGAIN.
JP   CXZ,AGAIN      ; jump, if CX=0, to AGAIN.
JP   AE,AGAIN       ; jump on unsigned >= to AGAIN.

To see how this macro works, consider what happens when "JP C,AGAIN" is
expanded.  In this case, JP_TYPE is the string "C", so J&JP_TYPE
creates the string "JC", and the macro expands as

JC   YES_JUMP
JMP  NO_JUMP

YES_JUMP:
JMP  AGAIN

NO_JUMP:

The JP macro is not quite so efficient as the JMPccc macros, since it
generates one additional JMP instruction.  However, it might be more
convenient to use.  Of course, in practice, we might never encounter a
JNO instruction which jumps more than 128 bytes (indeed, we may never
encounter a JNO at all), so is probably wiser to use JP to handle this
case than to invent a JMPNO instruction.  Similar comments apply to
some of the other Jccc's as well.

One thing that makes macros useful is that they can be re-used.
They do not have to be re-typed for every new program.  The reason for
this is that the macro assembler has the capability during assembly of
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"reading in" or "including" source code files other than the one
explicitly being compiled.  To see how this works, let us suppose for
the sake of argument that we have a file on our disk (called
"MACROS.LIB") which contains nothing but the definitions of various
macros:  for example, it might contain the definitions of JMPC, JMPZ,
JMPO, JMPS, JMPNC, JMPNZ, JMPNO, and JMPNS, and nothing else (that is,
no data segment, no code segment, no procedures, no "END" statement,
etc.).  For the sake of argument we will also suppose that we are using
MASM to assemble a completely different file, called "PROG6.ASM".  For
the programs we have written so far, the assembler simply reads in the
source file (PROG6.ASM), assembles it, and writes the assembled program
(PROG6.OBJ) to disk.  Suppose, however, that PROG6.ASM contained the
line

INCLUDE   MACROS.LIB

The INCLUDE pseudo-op specifies that an additional source-code file (in
this case, the file is MACROS.LIB, containing macro definitions) should
now be assembled before continuing with the assembly of PROG6.ASM.
That is, we can effectively use such separately written source code as
if it were actually contained in our own program.  If the file contains
macros, we can effectively use the macros, even though we have not
defined them in our program but have defined them at some previous
time.  The bottom line, therefore, is that every time you think of a
useful macro definition you should go and add it to MACROS.LIB.  If you
do this, you can use the macro in any future program without further
thought.  Indeed, in a very reasonable sense, we can think of macro
definitions as permanent programmer-defined extensions to the
instruction set of the microprocessor.  With this interpretation in
mind we will simply begin to use PUTCHR, JMPC, JMPNC, etc., and any
other macros we define as if they were actual instructions of the
processor.  This is not to say that every macro you define should be
added to the library.  Many macros are defined on the spur of the
moment as a time-saving aid just for a particular program, and would
not be at all useful for any other program ever written.  However, all
generally useful macros should be put into the library.

[Actually, for reasons explained in the text, and which there is
no reason to go into now, you should use the statments

IF1
INCLUDE MACROS.LIB

ENDIF

to include the macro file, rather than just INCLUDE by itself.  You
should simply put these three lines at the beginning of your template
program.]

SOME FILE-USE MACROS.  Macros are ideal for simplifying the use of
many DOS functions (such as file functions), because most of the code
required for using a DOS function simply sets up the various parameters
needed.  Indeed, we might define macros for all of the commonly used
file functions:  open, create, seek, read, write, and close.  For
demonstration purposes, we will consider just the read, write, and
close functions, with open, create, and seek being left as exercises
for the student.  [This remark is only half-facitious, since any time
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spent now on these macros will surely be saved when later programs are
written.]

The close-file operation is the most obvious, since only one
argument -- the file handle -- is required:

; Macro to close a file:
CLOSE     MACRO     HANDLE

MOV       AH,3EH    ; DOS CLOSE-FILE FUNCTION.
MOV       BX,HANDLE ; SELECT THE FILE TO CLOSE.
INT       21H
ENDM

The read-record and write-record functions are hardly less obvious,
except that we must also provide arguments for a memory buffer for the
record, the length of the record, and any error exits.  Here is how we
might write the write-record macro:

; Macro to write a record to a file:
WRITE     MACRO     HANDLE,BUFFER,RECLEN,ERROR_EXIT

MOV       AH,40H    ; DOS WRITE-RECORD FUNCTION.
MOV       BX,HANDLE ; SELECT THE FILE TO WRITE.
MOV       CX,RECLEN ; SELECT RECORD LENGTH.
MOV       DX,OFFSET BUFFER    ; BUFFER POSITION.
INT       21H
JMPC      ERROR_EXIT     ; EXIT ON WRITE-ERROR.
CMP       AX,RECLEN ; CHECK # OF BYTES WRITTEN.
JMPNE     ERROR_EXIT     ; EXIT IF TOO FEW BYTES.
ENDM

Note the use of the JMPccc macros to provide error exits.  The read-
record macro differs only in that we are likely to want separate exits
for disk error than for the end-of-file:

; Macro to read a record from a file:
READ      MACRO     HANDLE,BUFFER,RECLEN,END_FILE,ERROR_EXIT

MOV       AH,3FH    ; DOS READ-RECORD FUNCTION.
MOV       BX,HANDLE ; SELECT THE FILE TO READ.
MOV       CX,RECLEN ; SELECT RECORD LENGTH.
MOV       DX,OFFSET BUFFER    ; BUFFER POSITION.
INT       21H
JMPC      ERROR_EXIT     ; EXIT ON READ-ERROR.
CMP       AX,0      ; END OF FILE?
JMPE      END_FILE  ; IF YES, EXIT.
ENDM

One thing that is not obvious until we begin to use these macros
is just how simple some parts of our program begin to appear.  Let us
take a simple example, in which we want to write a program to copy one
file to another, much like the DOS COPY command.  Such a program would
appear as below, using the macros we have already defined.  Although it
is a rather inefficient way of proceeding in MS-DOS, we will use
records of length 1 (that is, we will copy the file byte by byte) and
hence will call our file buffer "CHARACTER":
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; Program to copy one file to another, byte-by-byte:

; Data:
input     dw   ?    ; storage for handle of input file.
output    dw   ?    ; storage for handle of output file.
character db   ?    ; buffer for file I/O.
error_message db 7,'Disk I/O error.',13,10,'$'

.

.

.
; CODE TO OPEN THE INPUT FILE AND CREATE THE OUTPUT FILE.

.

.

.
again:    read      input,character,1,quit,error

write     output,character,1,error
jmp       again

error:    display   error_message
quit:     close     input

close     output

Once again, it is apparent that programs written with macros can be
much easier to understand than programs in which every instruction is
explicitly written out.

The IF Pseudo-ops

With the programs we have written so far, all of the code in the
program is assembled when MASM is run, with the result that a .OBJ
object file is created.  There are instances, however, when we would
prefer that some of our code is not assembled, or is assembled under
some conditions and not others.

For one thing, if our program does not work as expected, we might
want to embed instructions in our program that are assembled only so
long as we are in the debugging phase of writing the program.  When the
program is finally totally debugged, as it stands now, we have to go
back through the program and remove (or put semi-colons in front of)
all such debugging statements.  It would be better if the assembler was
simply smart enough, somehow, to not assemble such code even though it
is actually in the program.

Another case of some interest is if we are writing a program that
we expect to run on several different computers.  These different
computers may have slightly different features or require the program
to be written in a slightly different way.  Thus, it would be nice to
have the assembler actually assemble the program slightly differently
in these two cases rather than have to maintain several separate
versions of the same program.

These things can be done with several different pseudo-ops, which
we will collectively call the "IF" pseudo-ops.  With the IF pseudo-ops
we can specify that blocks of code are to be assembled under some
conditions (as evaluated at assembly time) and not under others.  IF
pseudo-ops are not instructions of the CPU and do not affect program
control at run-time.
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There are a number of different IF pseudo-ops, although we will
explicitly discuss only the ones called "IF" and "IFE".  The general
syntax of "IF" is:

IF   numerical expression
.
.
.

;    CODE!
.
.
.

ENDIF

The code between IF and ENDIF is assembled only if the numerical
expression operand evaluates to something other than zero.  As a simple
example, for debugging purposes we might include the following in our
program:

DEBUGGING EQU  1
.
.
.
IF DEBUGGING
PUTCHR   '*'

ENDIF

As long as DEBUGGING is not set to zero, the PUTCHR macro is assembled
and (at runtime) displays an "*" on the screen.  Once we are no longer
debugging, we can set DEBUGGING to zero before assembling the program
and no such code will be assembled.

The IFE pseudo-op operated identically, except that the code
between itself and ENDIF is assembled only if the numerical expression
is zero.  As an example of this, we might write a macro which is a
variation of the PUTCHR macro in that it sends output either to the
screen or to the printer depending on whether (at assembly time) one of
its arguments is zero or 1:

DO_CHAR   MACRO   CHARACTER, DEVICE
IFE  DEVICE         ; IF DEVICE=0, USE SCREEN.
MOV  AH,2

ENDIF
IF   DEVICE         ; IF DEVICE=1, USE PRINTER.
MOV  AH,5

ENDIF
MOV  DL,CHARACTER
INT  21H
ENDM

Thus, to send an "A" to both the screen and to the printer, we might
include lines like this in our code:

DO_CHAR 'A',0
DO_CHAR 'A',1
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There is a second form of the IF-clause (or IFE) with a syntax
like this:

IF   numerical expression
.
.
.

;    CODE!
.
.
.

ELSE
.
.
.

;    CODE!
.
.
.

ENDIF

which assembles the code between IF and ELSE if the expression is non-
zero and assembles the code between ELSE and ENDIF if the expression is
zero.  Thus our DO_CHAR macro could have been slightly simplified as

DO_CHAR   MACRO   CHARACTER, DEVICE
IFE  DEVICE         ; IF DEVICE=0, USE SCREEN.
MOV  AH,2

ELSE                ; IF DEVICE=1, USE PRINTER.
MOV  AH,5

ENDIF
MOV  DL,CHARACTER
INT  21H
ENDM

String Instructions

For recreational purposes, we will now completely change the
subject and discuss some of the built-in string-manipulation features
of the 8088 microprocessor.

The 8088 can manipulate strings of either byte-values or word-
values, and these strings can be up to 64K in length.  There are five
built-in general types of functions:

1)  The load instructions LODSB and LODSW load an element of a
string into the accumulator.  LODSB loads a byte from a byte string
into AL, while LODSW loads a word from a word string into AX.

2)  The store instructions STOSB and STOSW store the value in the
accumulator as an element of a string.

3)  The move instructions MOVSB and MOVSW copy the elements of one
string to another string.

4)  The compare instructions CMPSB and CMPSW compare the elements
of two strings.
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5)  The scan instructions SCASB and SCASW scan a string for a
value equal to the accumulator.

There are two key features of the string instructions which make
them different from the otherwise similar normal MOV and CMP
instructions.  The first feature is that appropriate pointer registers
are automatically incremented or decremented for string operations.  We
have seen before that in order to access the elements of a character or
word array, we would normally use the BX, SI, or DI registers to
"point" at the proper place in the string.  Then, after whatever
processing we desire is finished, the pointer register must be
explicitly updated to point to the next string element.  With the
string instructions, however, this updating is automatic.  The second
key feature is that all of the string instructions can be automatically
repeated for a certain number of iterations or until a certain
condition of the ZF flag holds.  The features together allow for some
very simple, fast, and powerful string manipulations.

Except for those instructions that implicitly use the accumulator
as source or destination for string elements, source strings are
pointed to by the DS:SI segment:offset register-pair, and destination
strings are pointed to by the ES:DI register-pair.  Since all strings
are of length less than 64K, the DS and ES registers can never change
in a string operation; the SI (Source Index) and DI (Destination Index)
registers are, however, automatically updated (i.e., incremented or
decrement by 1 or 2) to point to the next string element.  As an
example of how this works, let us consider two strings, both in the
data segment, called "SOURCE" and "DESTINATION":

SOURCE         DB   'THIS IS A TEST STRING'
DESTINATION    DB   '                     '

In order to set up DS:SI to point to the source string, we need merely
do this:

MOV  SI,OFFSET SOURCE

while to set up ES:DI we need:

PUSH DS        ; SET ES TO EQUAL DS.
POP  ES
MOV  DI,OFFSET DESTINATION

To specify whether SI and DI are automatically incremented or
automatically decremented, we must set (or reset) a flag in the CPU.
This flag, the Direction Flag, or DF, specifies the "direction" (i.e.,
positive or negative) in which string operations move.  String
instructions are auto-incrementing (which we want, having given the
starting addresses rather ending addresses of the strings) if DF is
cleared by the instruction

CLD       ; set to auto-increment.

The STD instruction, on the other hand, sets auto-decrement mode.  We
can move one byte from the source string to the destination with the
instruction
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MOVSB     ; move one byte.

Thus, this instruction would copy the "T" from SOURCE to DESTINATION.
Similarly, we can move one word from source to destination with

MOVSW     ; move one word.

Since we have used the CLD instruction to set auto-increment mode, the
former instruction increments both SI and DI by one, so that they point
to the next byte of the string.  The latter instruction increments both
SI and DI by two, so that they point to the next word of the string.

The CMPSB and CMPSW string comparison instructions are very
similar.  They perform a CMP on the current string elements (bytes or
words) and then update SI and DI to point to the next elements of their
resprective strings.  There is one tricky point, however.  The book
states, apparently correctly, that Intel has foolishly implemented
these instructions differently from the CMP instruction.  The flags are
indeed set as if a subtraction has been performed.  However, the
hypothetical subtraction is

source-destination

rather than destination-source, as in CMP.  Usually this is of no
consequence since only checks for equality are typically performed, but
it is a nuisance.

The LODSB and LODSW instructions load the accumulator with an
element from the string source.  The STOSB and STOSW instructions store
the value from the accumulator into the destination string.  The SCASB
and SCASW instructions CMPare the value of the accumulator with the
current element from the destination string.  Like the CMPSB and CMPSW
instructions, the comparison is backwards:

accumulator-destination.

All of these instructions, of course, either auto-increment or auto-
decrement SI and/or DI by the appropriate amounts.

The real power of the string instructions is felt only when the
auto-repeat feature is used.  Any of the string instructions may be
repeated a fixed number of times, with or without an additional check
of the ZF flag as a termination condition.  In order to automatically
repeat a string instruction, we need to use a repeat prefix with the
instruction.  There are three repeat prefixes, REP, REPE (or REPZ), and
REPNE (or REPNZ).  These prefixes repeat the specified instruction the
number of times indicated by the CX register.  REPE and REPNE
additionally check the value of the ZF flag at the end of each
iteration and terminate if the flag is set (REPE) or not set (REPNE).
In the case of our sample strings, SOURCE is 21 characters long, and
the instructions

MOV  CX,21
REP  MOVSB
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would copy all of SOURCE into DESTINATION.  Filling a block of memory
with a given byte (or word) is also easy.  For example, to fill
DESTINATION with "A" rather than " " we could do

MOV  CX,21
MOV  AL,'A'
REP  STOSB

The instructions SCASB and SCASW, in conjunction with REPE, are
used to scan a string for a given value.  For instance,

MOV  CX,21
MOV  AL,' '
REPE SCASB

would halt when it located the first byte of DESTINATION which is a
space (in this case, the first character).  On the other hand,

MOV  CX,21
MOV  AL,' '
REPNE SCASB

would search for the first non-space (in this case, it would halt at
the end of the string, since there is no non-space character).

The final major use of these operations is in comparing two
strings for equality (or inequality).  The instructions

MOV  CX,21
REPNE CMPSB

would halt at the first byte of the strings which didn't match.  Thus,
if the instruction halts at the end of the strings, they must be the
same.

We will discuss the use of these string operations further in the
next lecture when we have an actual use for them.
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; Macro to close a file:
CLOSE     MACRO     HANDLE

MOV       AH,3EH             ; DOS CLOSE-FILE FUNCTION.
MOV       BX,HANDLE          ; SELECT THE FILE TO CLOSE.
INT       21H
ENDM

; Note the use of the JMPccc macros to provide error exits below:
; Macro to write a record to a file:
WRITE     MACRO     HANDLE,BUFFER,RECLEN,ERROR_EXIT

MOV       AH,40H             ; DOS WRITE-RECORD FUNCTION.
MOV       BX,HANDLE          ; SELECT THE FILE TO WRITE.
MOV       CX,RECLEN          ; SELECT RECORD LENGTH.
MOV       DX,OFFSET BUFFER   ; BUFFER POSITION.
INT       21H
JMPC      ERROR_EXIT         ; EXIT ON WRITE-ERROR.
CMP       AX,RECLEN          ; CHECK # OF BYTES WRITTEN.
JMPNE     ERROR_EXIT         ; EXIT IF TOO FEW BYTES.
ENDM

; Macro to read a record from a file:
READ      MACRO     HANDLE,BUFFER,RECLEN,END_FILE,ERROR_EXIT

MOV       AH,3FH             ; DOS READ-RECORD FUNCTION.
MOV       BX,HANDLE          ; SELECT THE FILE TO READ.
MOV       CX,RECLEN          ; SELECT RECORD LENGTH.
MOV       DX,OFFSET BUFFER   ; BUFFER POSITION.
INT       21H
JMPC      ERROR_EXIT         ; EXIT ON READ-ERROR.
CMP       AX,0               ; END OF FILE?
JMPE      END_FILE           ; IF YES, EXIT.
ENDM

; Program to copy one file to another, byte-by-byte:

; Data:
input     dw   ?             ; storage for handle of input file.
output    dw   ?             ; storage for handle of output file.
character db   ?             ; buffer for file I/O.
error_message  db 7,'Disk I/O error.',13,10,'$'

.

.

.
; CODE TO OPEN THE INPUT FILE AND CREATE THE OUTPUT FILE.

.

.

.
again:    read      input,character,1,quit,error

write     output,character,1,error
jmp       again

error:    display   error_message
quit:     close     input

close     output
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Comments

1.  On backup copies of your programs.  Those of you who are not overly
familiar with microcomputers (and some who are) are probably not aware
just how unreliable and risky it is to keep just one copy of valuable
programs.  Neither the computer hardware nor the diskette medium itself
is reliable enough for this practice to succeed in the long run.
Moreover, you yourselves are not immune from human error.  To protect
yourself in both cases, you should make backup copies of your work.
[Case history, for anyone who doesn't believe me:  Two class members
this past weekend found that files on their disks had been destroyed by
the computer.  In one case, this included not only all of the previous
homework assignments, but the macro library as well.]  Imagine what it
would be like to have the computer destroy a program you had been
working on for three weeks (such as the final project), including a
macro library you had been building for seven weeks!  The solution for
this problem is to make backup copies of your programs on a separate
disk.  Indeed, you might consider keeping two backups (and an
"original"), using all three disks in rotation, so that you always have
a backup of both the "current" version and of the previous version of
your program.  Backup copies can be made in several ways, including the
DOS COPY command and the DOS program BACKUP.  In either case, it is a
good idea to put a "copy protect" tab on your master disk before making
a backup, to prevent careless errors on your part (such as copying the
backup onto the original rather than vice-versa).

Review

In the last class, we continued our discussion of macros by
presenting a number of examples of macros that could actually be of use
in practice.  We introduced a macro with syntax

DISPLAY   message

where message is the name of a string-variable defined with DB, which
could display a string on the screen.  We introduced macros of the form

JMPccc    address

where ccc represents a "condition" (like C, NC, Z, NZ, CXZ, etc., as
used in conditional jump instructions).  These macros are functionally
equivalent to the conditional jump instructions Jccc, except that they
are NEAR rather than SHORT jumps.  Since it would be painful to define
JMPccc macros for each of the 31 Jccc instructions, we also introduced
a "universal" conditional NEAR jump macro,

JP   ccc,address

We also saw several macros that are useful in DOS file operations.  We
had
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CLOSE     handle
WRITE     handle,buffer,reclen,error_exit
READ      handle,buffer,reclen,end_file,error_exit

which were used for their respective DOS functions.

In order to define some of these macros, we introduced new pseudo-
ops.  We saw the

LOCAL     symbol list

macro, which defined a list of symbols that were local to the macro.
We saw the concatenation operator &, which joined two strings together.
We also saw the IF, IFE, ELSE, and ENDIF pseudo-ops, which were used
like

IF[E]     expression
.
.
.

;    code.
.
.
.

[ELSE]
.
.
.

ENDIF

The assembler assembles the code following IF only if the expression
operand is non-zero (and the code following IFE only if expression is
zero).  If ELSE is present, the code between ELSE and ENDIF is
assembled only if the condition fails (expression=0 for IF,
expression<>0 for IFE).

The most significant fact about macros, other than the fact that
they allow a syntax similar to that found in higher-level languages, is
that they can be re-used for many programs.  Typically, we store the
macros in a special file (called, say, MACRO.LIB), and we include the
macros in any program we write by putting the lines

IF1
INCLUDE MACRO.LIB

ENDIF

at the beginning of our source-code files -- indeed, in our template
program, if we wish.  In this way, as time goes on, it is as if we
gradually add new, sophisticated instructions to the processor.

We also briefly discussed the string instructions available on the
8088 microprocessor.  While we did not go into this in tremendous
detail (it is included in the next reading assignment), we did find out
the following things:

Strings consist of sequences of bytes or words, stored in the Data
Segment or in the Extra Segment.  All string operations operate
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implicitly on the accumulator (AL or AX) or on the source string
(pointed to by DS:SI) or on the destination string (pointed to by
ES:DI).  Since these operands are implicit in the instructions, no
string instruction requires any arguments.

String operations either auto-increment (move upwards in memory)
or auto-decrement (move downwards in memory).  The prevailing direction
is controlled by the DF flag in the CPU.  The instruction CLD sets
auto-increment mode, while the instruction STD sets auto-decrement
mode.

There are five basic types of string instructions:  The load
instruction loads the accumulator from the source string; the store
instruction stores the accumulator to the destination string; the scan
instruction compares the accumulator to the destination string; the
move instruction moves one element from the source string to the
destination string; and the compare instruction compares one element of
the source and destination strings.  The scan and compare instructions
are irritating, in that these subtract the destination from the source,
rather than the source from the destination as in CMP.  Each of the
instructions works on just one string element, but they auto-increment
or auto-decrement SI and/or DI in preparation for the next string
operation.

However, there are ways to automatically repeat each string
operation.  A string instruction is automatically repeated with the
REP, REPE, or REPNE prefixes.  If a repeat prefix is used, the
designated string operation is repeated the number of times specified
by the CX register.  However, for the REPE prefix, this is done only as
long as the Zero Flag is set.  With the REPNE prefix, the string
instruction is repeated only while the Zero Flag is not set.

The basic uses of the string instructions are these:  block moves,
block fills, checking a string for a given character, and comparing two
strings.

ASSIGNMENT:

1.  Read section 3.8 and do the problems for chapter 3.  Read chapter
5.

2.  In your previous homework programs, adapt all suitable code into
procedures which you can individually assemble.  This includes at least
your code for capitalizing the character in AL and for displaying the
hexadecimal characters corresponding to a byte.

3.  Finish up any pending homework assignments, since next week we will
start on the mid-term project.

Separate Assembly of Procedures

We have already seen how our programming tasks are simplified by
storing macros in a special "library" file for re-use by new programs.
It would be nice if we could do something similar for procedures, since
they are usually even more complex and perform even more sophisticated
tasks than macros.
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In fact, we obviously could reuse procedures in the same way as we
re-use macros -- by "including" them in our programs with the INCLUDE
macro.  However, there is a much better way.  The problem with
including them is that the source code may be large and may take the
assembler a long time to assemble.  If we could somehow use the
already-assembled forms of the procedures, it would be much better
since object code is much more compact than source code, and would
therefore take less time and memory to utilize.

In fact, we can do exactly this:  We can separately compile our
procedures and our "main" program and simply "link" them together with
the LINK program.  In this way, we not only are able to have instant
access to all of our old procedures, but we are also able to cut down
on our assembly time.

Here is a "template" for a file containing a procedure to be
individually assembled:

PUBLIC    name
CODE SEGMENT

ASSUME    CS:CODE
name PROC      FAR

.

.

.
;    CODE!

.

.

.
RET

name ENDP
CODE ENDS

END

Several features of this definition are worth discussion.  For one
thing, the pseudo-op PUBLIC is used to declare to the assembler that
the name of the procedure (in this case, name) is global -- that is,
that it is meaningful even after assembly of this file.  Normally,
names used in the source code have meaning only at assembly time and
completely disappear after that.  In real terms, the .OBJ file created
by the assembler contains no references to these names.  The PUBLIC
pseudo-op, however, allows names to be embedded in the .OBJ file in
such a way that the linker can link the procedure with another
separately assembled procedure that calls it.

Another interesting feature is that there is no data segment and
the ASSUME pseudo-op contains no "DS:DATA" part.  While it is possible,
with some effort, to include things like this, it is not a good
practice to allow separately assembled procedures to directly access
(that is, to access by name) items in the data segment.  Generally,
separately assembled procedures should access data indirectly, through
registers and through pointers contained in registers.  Otherwise, you
would have to make sure that every program which used this procedure
was set up in a certain way, to contain the proper names.  We will see
in the next lecture how arguments are typically passed to procedures
via the stack.
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A third feature is that, like a main program, we have declared our
procedure to be FAR, rather than NEAR.  While it is possible to
separately assemble NEAR procedures, there are problems involved which
are similar to those mentioned above in regard to data segments.  FAR
procedures have the disadvantage that there is slightly more memory and
time overhead in CALLs and RETs, but the advantage that (being in a
separate code segment) they do not subtract from the alloted 64K code
of the main program.

A final point is that we end the procedure with "END" rather than
with "END name".  The name part of an END statement specifies to the
assembler the address at which the main program should start executing.
For a separately assembled procedure, there is no such relevant
starting address (since it is not a main program), so the starting
address is omitted.

Here is an example of a procedure which can be separately
assembled:

public  disp_dec
code    segment

assume  cs:code
; This is a procedure to convert a binary number in the AL
; register to decimal ASCII characters and send them to
; the console.  A binary-to-decimal conversion works by
; dividing by ten (saving the remainders), until the number
; being divided is zero.  The remainders (which are all
; 0-9) can be directly converted into decimal digits ('0'-
; '9').  The only problem is that the digits are calculated
; in reverse order (least significant to most significant)
; and must therefore be stored rather than immediately
; displayed as they are calculated.  The stack is ideal for
; this temporary storage.  We push a "fence" value (decimal
; 10) onto the stack first, so that when the digits ('0'-
; '9') are eventually popped and displayed we will know
; when to quit.
disp_dec proc far

mov     bx,10      ; push a "fence" onto the stack.
push    bx

dec_loop:
; first, divide AX (=AL) by BL (=10).

mov     ah,0       ; prepare for a division.
div     bl         ; divide al by 10.

; result of division is AL, and the remainder (0-9) is AH.
add     ah,'0'     ; convert remainder to ASCII.
mov     dl,ah      ; prepare to push it.
push    dx
cmp     al,0       ; all converted?
jnz     dec_loop

; now, pop and display all of the digits, quitting when
; the "fence" value of 10 (decimal) is reached.
dec_disp:

pop     dx         ; get a digit.
cmp     dl,10      ; fence?
jz      dec_done   ; if so, quit.
mov     ah,2       ; display the digit.
int     21H
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jmp     short dec_disp
dec_done:

ret
disp_dec endp
code    ends

end

Aside from the fact that this does illustrate a procedure that can be
individually assembled, the only point of interest about it is the use
of the stack for temporary storage and the use of a "fence" value to
indicate completion rather than a count for looping on the computed
digits.  We will, however, have a use for this routine, as we will
discover later in the lecture.

Next, now that we know how to define procedures for separate
assembly, we must find out how to use separately assembled procedures.
We can freely use separately assembled procedures in our programs,
except that we must take the step of declaring to the assembler that we
are doing so.  This is accomplished with the EXTRN (for: EXTeRNally
defined symbol) pseudo-op.  The EXTRN pseudo-op has a syntax like this:

EXTRN     list of symbol:type

Each externally defined symbol (along with its type) must appear in an
EXTRN statement before it is used.  The type of the symbol specifies
whether the symbol is the name of a byte or word variable, or whether
it is a near or far procedure.  To use our sample procedure, we might
put the line

EXTRN     DISP_DEC:FAR

near the beginning of our main program, before any CALLs to DISP_DEC
have actually appeared in the source-code.  Thus,

EXTRN     DISP_DEC:FAR
.
.
.

MOV  AL,145
CALL DISP_DEC

would display the string "145" on the screen, even though DISP_DEC was
not otherwise defined in the program.

One other thing is necessary, however, and that is that the way we
link our program must be changed.  Suppose that our main program is
called PROGRAM (with .ASM for source code and .OBJ for assembled code),
and that DISP_DEC is contained in a file called DECIMAL (.ASM or .OBJ).
Normally, we would link PROGRAM with a DOS command like this:

LINK PROGRAM;

which would create PROGRAM.EXE.  To link in DECIMAL.OBJ as well, we
would have to modify this to

LINK PROGRAM+DECIMAL;
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which would create PROGRAM.EXE.  Note that this is not the same as
"LINK DECIMAL+PROGRAM;", which would try to create a file called
DECIMAL.EXE.

For now, we will deal with individually assembled procedures in
just this way.  In later lectures, we will see that it is possible
combine all of our individual .OBJ files into more compact "libraries"
of procedures, and thereby avoid the clutter and confusion of having so
many files on our disk.

More About Keyboard Input

Let's extend by a little our knowledge of how to get keyboard
input.

In all of our previous work, we used DOS functions 1, 8, and 10 to
read the keyboard for us.  On feature of these functions which is
sometimes useful is that they check for various control keys like CTRL-
C, CTRL-S, CTRL-P, etc. to be entered, in which case some special
actions are taken.  For example, CTRL-C exits the program.  In many
cases, however, this is not what we want.  We may want to use these
particular keys to perform some other function, or we may not want the
user to be able to break out of the program with CTRL-C.  Fortunately,
there is another DOS function, function 7, which takes care of part of
this problem.  Function 7 is exactly like function 8, except that it
reads these special keys just mentioned as if they were like any other
key, and performs no special checks.  Thus, we could use function 7
anywhere we now use function 8, and simply not worry about losing
control of the computer if the user presses a CTRL-C.

Another flaw in the way we have dealt with the keyboard is that
whenever we want a keyboard character DOS takes control away from the
program and just waits for a key to be pressed.  This is fine if we
know that nothing else of value can be accomplished by the program
until it receives some input.  It may be, however, that we don't want
to wait for a key to be pressed -- rather we might want to have the
program go an do something else in the meantime, just checking the
keyboard occasionally to see if a character is ready for processing.
For this, DOS has provide function number 0BH, the keyboard status
function.  The keyboard status function simply returns a value
indicating whether or not a character is ready at the keyboard.  Here
is a sample use:

MOV  AH,0BH         ; SELECT KEYBOARD STATUS FUNCTION.
INT  21H
CMP  AL,0           ; KEY PRESSED?
JNZ  YES_KEY_PRESSED

The output values of this function are indicated by the the above code.
If there is a character ready, AL contains 0FFH on return, whereas if
no character is ready, AL contains 0.  Unfortunately, this function
checks for CTRL-C and exits from the program if it is pressed.

The standard ASCII character set does not contain many of the keys
that actually appear on the IBM PC's keyboard.  Therefore, pressing
these keys cannot result in the return of a standard ASCII code.
Examples of such keys are the function keys F1-F10 and the arrow keys.
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On the IBM PC, pressing these keys results instead in extended ASCII
codes being returned by DOS functions 1, 7, and 8.  An extended ASCII
code consists of two bytes rather than one.  Since each DOS call
results in just one byte being returned in the AL register, we need to
call DOS twice to retrieve an extended code.  We know to do this since
the first character returned is always a zero.  The most useful
extended codes are outlined on p. 230 of the text.

Let's see an illustration of this.  One thing the table on p. 230
tells us is that the extended code for a down-arrow is 50H.  If the
down-arrow key was being pressed on the keyboard, a call to DOS using
function 8 would return a zero, and a second call would return a 50H (a
"P").  We would know that this was a down-arrow rather than a "P"
simply because a real "P" would not be preceded by a zero.  For
example, code that can distinguish entry of a down-arrow key from that
of a real "P" might look like this:

mov  ah,8        ; read the keyboard.
int  21H
cmp  al,0        ; if al=0, an extended code follows.
jnz  real_ASCII  ; otherwise, it's a real ASCII char.
mov  ah,8        ; since al was zero, we must go ahead

; and read the extended code.
int  21H

Of course, since we would probably like to read the keyboard using
a macro, this jumping around to different addresses is rather
inconvenient.  As an alternative, we might return the normal ASCII
characters as values 0-127, and return extended codes as values 128-
255.  Here is a macro for that:

; A better keyboard-reading macro.  It returns extended
; key codes as values 128-255, rather than requiring a
; second use of getchr after a returned value of 0 has been
; detected.
getchr    macro     character

local     real_ascii
mov       ah,7        ; read the keyboard.
int       21h
cmp       al,0        ; extended character?
jnz       real_ascii  ; if not, then okay.
mov       ah,7        ; if so, get the
int       21h         ; extended code.
or        al,80H      ; convert to 128-255.

real_ascii:
; if the argument of the macro is blank, just leave the
; character in AL.

ifnb      <character>
mov       character,al

endif
endm

Other than the extended characters, the only real novel point about
this macro is the use of the IFNB conditional assembly pseudo-op.  This
pseudo-op works just like IF and IFE, except that instead of testing a
numerical condition, the code between IFNB and ENDIF (or ELSE, if
present) is assembled if the string argument (which is enclosed in
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angular brackets as delimiters) is not blank.  There is a similar IFB
pseudo-op which assembles only if the string argument is blank.  Thus,
for example, "GETCHR" would get a character into AL, while "GETCHR BL"
would get a character into BL.  (This macro also incorporates the
"improvement" of using DOS function 7 rather than function 8.)  For
example, if we used the statement

getchr

then on pressing a "P" we would find that AL contained 50H (the ASCII
code for "P"); on pressing a down-arrow, we would file that AL=0D0H
(=80H+50H).

The ANSI Driver

Now that we have seen how to get some additional use out of the
keyboard, it would alse be nice to get some additional control over the
screen.  For example, it would be nice to be able to easily clear the
screen from within our programs, or to move the cursor to any part of
the screen we desire.  We might want to highlight some of our
characters (displaying them more brightly than the surrounding
characters), or underline them, or make them blink, or display them in
reverse video, or modify the color of the characters.  While the IBM PC
does not have an unlimited repertoire of display modes, many of these
things can be easily accomplished.  Which of these features is
available on a given IBM PC (or PC clone) depends on the video hardware
with which the machine is equipped.  If we use a standard software
interface, however, as discussed below, we can for the most part ignore
such hardware details.

This universal software interface is the so-called ANSI device
driver, which is contained in a file called ANSI.SYS.  While this
software cannot overcome any hardware limitations of the computer (for
example, it cannot display color with a monochrome adapter or
underlining with a color adapter), it nevertheless allows us to write
our programs as if all features are available.  If the features we
elect to use (such as underlining) don't happen to be available, our
programs will still work -- they just won't underline anything.  Some
features, such as cursor movement, are controlled by software (rather
than hardware) and are always available.

In order to use the features of the ANSI driver, the driver must
be "installed" in the computer.  This is done automatically when the
computer is turned on or is reset, but only if certain conditions are
satisfied.  In order to insure that ANSI.SYS is automatically
installed, or to determine if ANSI.SYS is installed, you must examine a
file called CONFIG.SYS.  There are two cases.  If there is no file
CONFIG.SYS, you should create such a file using EDLIN;  CONFIG.SYS
should contain the single line

DEVICE=ANSI.SYS

On the other hand, if CONFIG.SYS already exists, you should examine it
with the command

TYPE CONFIG.SYS
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If CONFIG.SYS contains the line mentioned above, then ANSI.SYS is
already installed.  Otherwise, you should add this line to CONFIG.SYS
with EDLIN.  In either case, if you have modified CONFIG.SYS you should
reset the computer by simultaneously holding down ctrl-alt-del.  This
information applies only to IBM PCs and close clones; on some machines,
the ANSI driver may be always available.

We will assume from now on that ANSI.SYS is installed.

As mentioned earlier, the ANSI driver allows you to control the
screen and the cursor in several new ways.  It does this by means of
escape sequences output to the screen.  An escape sequence is a string
of characters, the first of which is the escape character (ASCII code
27 decimal).  In the case of the ANSI driver, the second character in
the escape sequence is always a left-square-bracket, "[".  The left-
bracket is followed by (optional) numerical parameters, with the string
finally being terminated by an alphabetic character that indicates
which function is to be performed.  This can hopefully be made clearer
by an example:

; Example of how to use the ANSI driver to clear the screen
; and then to move the cursor down 15 lines:
clear_screen db     27,'[2J$'
move_down    db     27,'[15B$'

.

.

.
display   clear_screen
display   move_down

Here, "displaying" the string clear_screen causes the screen to clear,
and "displaying" the string move_down causes the cursor to move down 15
lines.  Both strings begin with <ESC> and "[", are followed by one
numerical parameter, and end with an alphabetic character.  (The dollar
signs are, of course, used only by the display macro to terminate the
strings and have nothing to do with the ANSI driver.)  The "J"
terminating alphabetic character indicates that an erasure function is
desired, while the "B" character indicates a "move cursor down"
operation.  The numerical parameter "2" indicates a full-screen
erasure, while the numerical parameter "15" indicates that the cursor
is to move down 15 lines.  Notice that the numerical parameters are
actually given by their ASCII decimal equivalents.  In many cases,
numerical parameters are optional, defaulting to one (or some other
obvious value).  Thus, if the "15" had been omitted in move_down, the
cursor would only move down by one line.

(See handout for full list of supported commands.)

Unfortunately, this ANSI driver does not implement many of the
useful features in the ANSI standard.  However, it does implement
several commands we can get a lot of use out of.  Because each command
has its own mnemonic, it is helpful for us to access the ANSI commands
through macros rather than through the various escape sequences.  I
have created a file of macros whose use is outlined in the handout.
This list is posted on my door, and the macro library (ANSI.LIB) is
also available to anyone who wants to bring a disk down to my office.
Let's see how some of these macros might work.
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The easiest macros are, of course, for those ANSI functions with
no arguments, like ED and EL.  The macro for ED looks like this:

; Erase entire display:
ed      macro

esc_bracket
putchr  '2'
putchr  'J'
endm

where we have used both the previously defined macro PUTCHR a new macro
ESC_BRACKET

; This macro does the ESC[ part:
esc_bracket macro

putchr  27
putchr  '['
endm

which starts the escape sequence by sending the escape left-bracket
sequence to the ANSI driver.

Macros for functions with one argument are somewhat more complex,
since several new factors need to be taken into account.  One is that
the argument is optional and may be omitted.  This is not a problem,
since we have already seen how arguments can be omitted from macros if
we test them with the IFNB conditional assembly pseudo-op.  The second
difficulty is slightly more serious, in that for a macro like

CUU  AL

in which the number of rows to move upwards is given by the AL
register, we actually want to send the ASCII decimal equivalent (which
could be up to three characters) to the ANSI driver.  This is where the
DISP_DEC procedure defined earlier comes in, since it has exactly this
function.  Therefore, we include the following in ANSI.LIB

extrn   disp_dec:far
; This macro is used to ease use of the decimal display
; procedure.  Sample:
;       DECIMAL                 ; DISPLAY DECIMAL NUMBER IN AL.
;       DECIMAL 46              ; DISPLAY 46.
;       DECIMAL FOO[SI]         ; DISPLAY DECIMAL NUMBER FOO[SI].
decimal macro   number

ifnb    <number>
mov     al,number

endif
call    disp_dec
endm

to let us easily use DISP_DEC.  We also find it convenient to have a
macro like:
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; This macro does just the initial one-argument prefix.
; First it sends the ESC[, then it sends the ASCII decimal
; representation of the argument (if present).  That is,
; ONE_ARG sends the sequence ESC[#.
one_arg macro   argument

esc_bracket
ifnb    <argument>
decimal argument

endif
endm

With tools like these, construction of, say, a CUU macro is very easy.
In fact, we have

; This moves the cursor up.  Examples:
;       cuu     2               ; move up by two lines.
;       cuu                     ; move up by one line.
cuu     macro   distance

one_arg         distance
putchr  'A'
endm

; This moves the cursor down.  Examples:
;       cud     2               ; move down two lines.
;       cud                     ; move down one line.
cud     macro   distance

one_arg         distance
putchr  'B'
endm

etc.  Two-argument functions are turned into macros in much the same
way.

From now on, let us assume that all of the macros described in the
handout exist and can be used freely.  What might a program using these
macros look like?  For the purposes of demonstration, here is a short
sample program:

; Program to demonstrate the use of the ANSI driver and
; macros.  This program will:
;    1. Erase the screen.
;    2. Move to the bottom of the screen, and print in
;       high-intensity mode "This is the status line.
;       Status= TEST", where "TEST" is blinking.
;    3. Move to the top of the screen and input characters
;       in "typewriter mode" (and low intensity) until a
;       ctrl-C is pressed.  Since we now use DOS function
;       7 in our GETCHR macro, we must explicitly test for
;       this.

ED             ; erase the screen.
CUP 25,1       ; move to bottom line.
SGR 0          ; first, turn off all attributes.
SGR 1          ; then, turn on high intensity.
DISPLAY MSG1   ; "This is the status line.  Status= ".
SGR 5          ; turn on blinking.
DISPLAY MSG2   ; "TEST".
SGR 0          ; turn off all attributes.



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 187/361

CLASS 10

CUP 1,1        ; home the cursor.
AGAIN:

GETCHR         ; get a keyboard character.
CMP AL,3       ; ctrl-C?
JE  DONE
PUTCHR AL      ; display the character.
JMP SHORT AGAIN

DONE:

While no work will be assigned which explicitly requires the use
(or mastery) of the ANSI driver, these commands are available for use
and are rather fun to play with.
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REFERENCE SHEET FOR THE ANSI DRIVER AND ITS MACROS
Note 1.  The ANSI screen driver must be installed by putting the line

DEVICE=ANSI.SYS
into a file called CONFIG.SYS on the boot disk.  To use the ANSI macros
once the driver is installed, the assembly language source file must
contain the line

INCLUDE ANSI.LIB
and the object file must be linked to the file DECIMAL.OBJ.
Note 2.  Below, # stands for any decimal number.

ANSI        ESCAPE
MNEMONIC     SEQUENCE      MACRO USE         DESCRIPTION OF ACTION

CUP        ESC[#;#H    CUP row,column      Move cursor to specified
ESC[#H      CUP row             row and column.  Default
ESC[;#H     CUP    ,column      is 1 for either
ESC[H       CUP                 omitted parameter.

CUU        ESC[#A      CUU distance        Move cursor specified
ESC[A       CUU                 distance up.  Default=1.

CUD        ESC[#B      CUD distance        Same as CUU, but down.
ESC[B       CUD

CUF        ESC[#C      CUF distance        Same, but to the right
ESC[C       CUF                 instead of up or down.

CUB        ESC[#D      CUB distance        Same, but to the left.
ESC[D       CUB

HVP        ESC[#;#f    HVP row,column      Same as CUP.
ESC[#f      HVP row
ESC[;#f     HVP    ,column
ESC[f       HVP

SCP        ESC[s       SCP                 "Save" cursor position.

RCP        ESC[u       RCP                 "Recall" cursor position.

ED         ESC[2J      ED                  Erase the screen.

EL         ESC[K       EL                  Erase to end of line.

SGR        ESC[#m      SGR attribute       Turn on specified char.
attribute.  (Note 3.)

SM         ESC[=#h     SM mode             Set specified screen
mode. (See note 4.)

RM         ESC[=#l     RM mode             Reset specified mode.
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Note 3.  On an IBM PC, the allowed character attributes are:  0=all
attributes off, 1=high intensity, 4=underscore, 5=blinking, 7=reverse
video, 8=invisible, 30-37=foreground color (black, red, green, yellow,
blue, magenta, cyan, white), and 40-47=background color.
Note 4.  On an IBM PC, the allowed "screen modes" are 0=40x25 b&w,
1=40x25 color, 2=80x25 b&w, 3=80x25 color, 4=320x200 color, 5=320x200
b&w, 6=640x200 b&w, 7=line wrap.
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PUBLIC    name
CODE SEGMENT

ASSUME    CS:CODE
name PROC      FAR

...
;    CODE!

...
RET

name ENDP
CODE ENDS

END
-------------------------------------------------------------------

public  disp_dec
code    segment

assume  cs:code
; This is a procedure to convert a binary number in the AL register ;
to decimal ASCII characters and send them to  the console.  A ; binary-
to-decimal conversion works by dividing by ten (saving the ;
remainders), until the number being divided is zero.  The remainders ;
(which are all 0-9) can be directly converted into decimal digits ;
('0'- '9').  The only problem is that the digits are calculated in ;
reverse order (least significant to most significant) and must ;
therefore be stored rather than immediately  displayed as they are ;
calculated.  The stack is ideal for this temporary storage.  We push ;
a "fence" value (decimal 10) onto the stack first, so that when the ;
digits ('0'- '9') are eventually popped and displayed we will know  ;
when to quit.
disp_dec proc far

mov     bx,10      ; push a "fence" onto the stack.
push    bx

dec_loop:
; first, divide AX (=AL) by BL (=10).

mov     ah,0       ; prepare for a division.
div     bl         ; divide al by 10.

; result of division is AL, and the remainder (0-9) is AH.
add     ah,'0'     ; convert remainder to ASCII.
mov     dl,ah      ; prepare to push it.
push    dx
cmp     al,0       ; all converted?
jnz     dec_loop

; now, pop and display all of the digits, quitting when
; the "fence" value of 10 (decimal) is reached.
dec_disp:

pop     dx         ; get a digit.
cmp     dl,10      ; fence?
jz      dec_done   ; if so, quit.
mov     ah,2       ; display the digit.
int     21H
jmp     short dec_disp

dec_done:
ret

disp_dec endp
code    ends

end
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; A better keyboard-reading macro.  It returns extended
; key codes as values 128-255, rather than requiring a
; second use of getchr after a returned value of 0 has been
; detected.
getchr    macro     character

local     real_ascii
mov       ah,7        ; read the keyboard.
int       21h
cmp       al,0        ; extended character?
jnz       real_ascii  ; if not, then okay.
mov       ah,7        ; if so, get the
int       21h         ; extended code.
or        al,80H      ; convert to 128-255.

real_ascii:
; if the argument of the macro is blank, just leave the
; character in AL.

ifnb      <character>
mov       character,al

endif
endm

-----------------------------------------------------------------

; Example of how to use the ANSI driver to clear the screen
; and then to move the cursor down 15 lines:
clear_screen db     27,'[2J$'
move_down    db     27,'[15B$'

.

.

.
display   clear_screen
display   move_down

-------------------------------------------------------------------

; Erase entire display:
ed      macro

esc_bracket
putchr  '2'
putchr  'J'
endm

-------------------------------------------------------------------

; This macro does the ESC[ part:
esc_bracket macro

putchr  27
putchr  '['
endm
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extrn   disp_dec:far
; This macro is used to ease use of the decimal display
; procedure.  Sample:
;       DECIMAL                 ; DISPLAY DECIMAL NUMBER IN AL.
;       DECIMAL 46              ; DISPLAY 46.
;       DECIMAL FOO[SI]         ; DISPLAY DECIMAL NUMBER FOO[SI].

decimal macro   number
ifnb    <number>
mov     al,number

endif
call    disp_dec
endm

-------------------------------------------------------------------

; This macro does just the initial one-argument prefix.
; First it sends the ESC[, then it sends the ASCII decimal
; representation of the argument (if present).  That is,
; ONE_ARG sends the sequence ESC[#.

one_arg macro   argument
esc_bracket
ifnb    <argument>
decimal argument

endif
endm

-------------------------------------------------------------------

; This moves the cursor up.  Examples:
;       cuu     2               ; move up by two lines.
;       cuu                     ; move up by one line.

cuu     macro   distance
one_arg         distance
putchr  'A'
endm

; This moves the cursor down.  Examples:
;       cud     2               ; move down two lines.
;       cud                     ; move down one line.

cud     macro   distance
one_arg         distance
putchr  'B'
endm
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; Program to demonstrate the use of the ANSI driver and
; macros.  This program will:
;    1. Erase the screen.
;    2. Move to the bottom of the screen, and print in
;       high-intensity mode "This is the status line.
;       Status= TEST", where "TEST" is blinking.
;    3. Move to the top of the screen and input characters
;       in "typewriter mode" (and low intensity) until a
;       ctrl-C is pressed.  Since we now use DOS function
;       7 in our GETCHR macro, we must explicitly test for
;       this.

; Variables:
MSG1 DB 'This is the status line.  Status=$'
MSG2 DB 'TEST$'

.

.

.

; Code:
ED             ; erase the screen.
CUP 25,1       ; move to bottom line.
SGR 0          ; first, turn off all attributes.
SGR 1          ; then, turn on high intensity.
DISPLAY MSG1   ; "This is the status line.  Status= ".
SGR 5          ; turn on blinking.
DISPLAY MSG2   ; "TEST".
SGR 0          ; turn off all attributes.
CUP 1,1        ; home the cursor.

AGAIN:
GETCHR         ; get a keyboard character.
CMP AL,3       ; ctrl-C?
JE  DONE
PUTCHR AL      ; display the character.
JMP SHORT AGAIN

DONE:
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Comments

1.  Although the names of assembly-language instructions are called
mnemonics, the word "mnemonic" itself has nothing to do with assembly
language.  A mnemonic is simply an easy-to-remember name for something.
Thus, 8088 instructions and ANSI cursor motion commands can each be
named with "mnemonics", and these two types of mnemonics do not have to
be related in any way.

2.  As several of you have discovered, the arguments of a macro must
always appear in the correct order.  I'm sorry that I didn't make this
clear, however it should be obvious on reflection.  When a macro is
expanded, the assembler simply makes a straight substitution of
whatever you type for the arguments.  After all, you haven't given the
assembler the slightest bit of information to allow it to do anything
else.  The order of the arguments is the only thing the assembler has
to go on.

3.  When I mentioned in the last class that I would not be teaching
this course again, I seem to have given some of you the impression that
I didn't like the course.  This isn't true; actually, it's just that I
am very unlikely to be chosen by the Computer Science department to
teach the course again.  In fact I would like to teach it again, but I
probably won't be given the option.

4.  In discussing the extended keyboard codes last time, I forgot to
mention that this is an area where incompatibility between IBM PCs and
PC clones can appear.  There is no guarantee that an IBM clone has the
same special function keys, returns the same extended codes, or even
that it uses extended codes at all!  This is not to say, however, that
our new, improved GETCHR macro (which can detect extended keyboard
codes as well as ASCII codes) cannot be used with such clones.  It is
just that there isn't that much advantage in using it if there are no
extended codes to detect.

5.  Some things I neglected to say about angle brackets ">" and "<".
In the IFB and IFNB conditional pseudo-ops, which (respectively)
assemble the code that follows if the argument is blank or non-blank,
the argument is enclosed in angle brackets:

IFB  <argument>
IFNB <argument>

In fact, the angle brackets act as delimiters in several circumstances.
It turns out, for example, that you are apparently not allowed to
include spaces in the arguments of macros:  statments like

PUTCHR    BYTE PTR [BX]

are treated as if they were just "PUTCHR BYTE".  Obviously, this won't
do.  However, as far as I can tell, you can use angle bracket
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delimiters to group the words "BYTE", "PTR", and "[BX]" together in
spite of the intervening spaces, so that

PUTCHR    <BYTE PTR [BX]>

would do just what we want.  I believe that the angle brackets are used
just like parentheses in normal arithmetic to "group" together
different items.  However, this is a rather large extrapolation of the
uses of angle brackets mentioned in the Macro Assembler manual.

Review

In the previous lecture, we began by discussing separate assembly
of procedures.  We found that individual procedures could be separately
assembled, and eventually linked together to form a complete program.
We discussed only the simplest case, of a file containing a single FAR
procedure and no data.  We found that there were basically three things
we had to do to make individual assembly work.  First, in the file
containing the procedure we had to include the line

PUBLIC    name

(where name is the name of the procedure) in order to declare that the
name of the procedure was available globally -- i.e., not just in this
file.  Second, we needed to include the line

EXTRN     name:FAR

in the file calling the procedure.  Otherwise, the assembler (not
knowing that the name was externally defined) would merely think that
it was undefined.   Finally, after all parts of the program were
assembled, we needed to change the way we linked the program so that
all files needed were linked together.

We also discussed improving our keyboard-input abilities.  Three
points were brought out.  First, if we want to avoid the normal ctrl-C
checking done by DOS function 8 (and 1 and 10), we can use instead DOS
function 7, which is equivalent except that no checking for special
characters is done.  Second, if we merely want to check whether a
keyboard character is available (rather than actually have DOS take
control and wait for one) we can use DOS function 11 (0BH).  This
"keyboard status" function returns a byte indicating whether or not a
character is ready, but it doesn't actually return the character.  The
value 255 is returned in AL if a character is ready, and a zero is
returned if not.  Third, we discussed the extended character codes of
the IBM PC.  These are two-byte (rather than single-byte ASCII) codes
for the non-ASCII characters on the IBM PC's keyboard.  An extended
code is fetched using two DOS "get character" function calls.  The
second call is needed only if the first one returns a zero byte;
otherwise, the byte returned by the first call is a legitimate ASCII
character as we have been assuming so far.  Taking all of these facts
into account, we introduced a new-and-improved get-character macro
GETCHR which returned 0-127 for a real ASCII character and 128-255 for
an extended code.

We also discussed some improvements in our screen-output
capabilities.  These improvements were effected by using the ANSI.SYS
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installable device driver.  ANSI.SYS needed to be "installed" by
including the line

DEVICE=ANSI.SYS

in the file CONFIG.SYS (and rebooting, the very first time).  After
this, however, the driver would be automatically installed whenever the
computer is turned on.  Once installed, the ANSI driver provides a
uniform software interface for screen control among PCs and PC-clones.
Of course, not every hardware feature is present on every machine, so
the driver just ignores it if you try to select a feature that doesn't
exist.  Features included in the driver are:  screen erasure,
positioning the cursor, and turning (or off) various attributes such as
blinking, underlining, reverse video, etc.  These features are
controlled by means of "escape sequences" output to the screen.
However, for us it is more convenient to control everything by means of
macros.  I have provided a special file of macros for this purpose.
Since the available features are well described by the handout given in
the previous lecture, there is no need to go into these things further.

Mid-term Project

Without further ado, let me state that the mid-term project is a
sorting program.  The program to be written will do the following:  It
will read a text file from the disk, it will sort the text read in this
way so that the lines are in alphabetical order, and then it will write
the lines of text (in alphabetical order) to a new file.  Such a
program could be used in many ways.  It could, for example, sort a file
of mailing addresses so that the names are in alphabetical order.  For
example, a file reading

Moon, Alfred        77 Wacker Rd., Chicago, IL
Feynman, Richard    California Institute of Technology
Burkey, Ronald S.   U. of Texas at Dallas
Reagan, Ronald      White House, Washington, D.C.

could be sorted to

Burkey, Ronald S.   U. of Texas at Dallas
Feynman, Richard    California Institute of Technology
Moon, Alfred        77 Wacker Rd., Chicago, IL
Reagan, Ronald      White House, Washington, D.C.

Actually, there is a program called SORT provided with MS-DOS that does
this.  It takes lines from the standard input device, sorts them, and
sends them to the standard output device.  Normally this program is
used with the I/O redirection feature so that it can get input from a
file and send the output to another file.  For example, in the case
above, if the original file is called "UNSORTED.TXT", then

SORT <UNSORTED.TXT >SORTED.TXT

would create a file called "SORTED.TXT" which contains the sorted list.
There is, however, a real need for a better sorting program, since SORT
is unbelievably slow.

(Discussion of the mid-term assignment handout.)
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Sorting Algorithms (or:  Is the Bubble Sort a Communist Conspiracy?)

(Discussion of the sorting-method handout.)

Hand Compilation of Pascal Procedures

Generally speaking, algorithms are not developed in assembly
language.  As you have all found out, programming in assembler is
difficult and confusing enough by itself.  With the additional burden
of having to debug the algorithm as well, program development slows to
practically zero.

One alternative to trying to directly writing an algorithm in
assembler is "hand compilation" or translation of programs that have
been written and already debugged in another computer language.  There
are two advantages in this.  One is, of course, that you get a working
assembler program in a much shorter time.  Usually, you will want to go
through the assembler program afterwards to clean it up a bit and make
it more efficient.  Nevertheless, hand compilation is a quick route to
a working program.  The second advantage is that by trying to
systematically convert a higher-level language to assembler you can
gain a lot of insight into the operation of programs compiled with a
true compiler.  In our case, we will learn to hand-compile a subset of
the Pascal language, since many of you are learning that language now,
and since the source-code for our sorting procedures is in Pascal.

We will discuss and learn how to fake a number of Pascal
constructs, including:  integer variables, arrays of integers,
arguments of procedures, local variables of procedures, FOR-DOs,
REPEAT-WHILEs, WHILE-DOs, and various other things that occur to us
along the way.

First, let us consider the simplest possible Pascal procedure:
the empty procedure

procedure myproc;
begin
end;

This is quite simple to translate into assembler.  We will assume that
all Pascal procedures correspond to FAR PROCs, and it should be no
surprise to anybody that myproc translates to

myproc    proc      far
ret

myproc    endp

Of course, whether or not a real Pascal (or other language) compiler
would turn MYPROC into a FAR procedure (as opposed to a NEAR procedure)
depends entirely on the compiler.  Microsoft Pascal (or FORTRAN) would
create a FAR procedure, but Turbo Pascal would create a NEAR procedure.

Let's see a more difficult one.  How about this:
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procedure myproc(c:char);
begin

write(c)
end;

This procedure has two new features.  It has an argument, and it has an
executable statement inside the block.  Of course, it is clear that the
"write(c)" must translate to something like "PUTCHR c" -- however, we
don't know how Pascal manages to pass the value of c to the procedure.
It turns out that Pascal compilers generally arrange for arguments to
be passed on the stack, so in converting myproc to assembler we would
probably want to provide a macro like

myproc    macro     c
mov       al,c      ; put the value of c into al.
push      ax        ; and push it onto the stack.
call      myproc_procedure
endm

Then, anyplace we would have "myproc(c)" in Pascal, we could simply use
"myproc c" in assembler.  Again, however, whether a real Pascal
compiler would actually use the stack exactly like this varies from
compiler to compiler.  Typically, a value parameter might be passed on
the stack like this.  On the other hand, a variable parameter would not
be passed on the stack -- rather, its address would be passed.  With
FORTRAN, all parameters are variable parameters, so only the addresses
would be placed on the stack.  With some compilers, data is assumed to
be on the data segment, so only a word address appears on the stack;
with others, data can be anywhere in memory, so a doubleword address is
put on the stack.  For us, integers will always be passed on the stack,
but when we use arrays we will pass addresses so we don't have to put
the entire array on the stack.

This is fine, but how does myproc_procedure (which we haven't
defined yet) manage to get the argument c off of the stack?  It cannot
easily POP it off, since it would first have to POP off its own return
address!  The solution is to use the BP register to index into the
stack.  As we have mentioned earlier, the BP register can be used to
indirectly address memory just like BX, SI, and DI, with the exception
that BP defaults to the stack segment, while the others default to the
data segment.  This still leaves us with a dilemma, however, since if
the argument c is not POPped, then it will still be on the stack after
the procedure RETurns, and then must be explicitly POPped (presumably
by our macro).  [That is, we are apparently breaking our rule that
everything pushed onto the stack must be popped off.]  Actually, this
is not a problem.  There is a form of the RET instruction that we have
not encountered before, in which we can specify as an argument a number
of bytes to be popped after the return address is popped:

RET  number_of_bytes

This instruction would remove both the return address and the specified
number of bytes from the stack.  With this new RET instruction, we can
write our procedure as follows:
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; Procedure called by the myproc macro:
myproc_procedure proc    far

push      bp        ; push bp, since we'll use it.
mov       bp,sp     ; at this point [bp] gives the last

; thing pushed on the stack (which is
; its old value), [bp+2] and [bp+4]
; are the two words of the return
; address, and [bp+6] is the (word)
; argument pushed on the stack.

putchr    [bp+6]    ; display the character.
pop       bp        ; restore bp before quitting.
ret       2         ; return and pop the argument.

myproc_procedure endp

While this isn't pretty, we have to at least admit that it will
probably work.  Actually, our procedure can be made to look a little
better if we use a property of the EQU pseudo-op which we haven't
exploited before.  Consider the following use of EQU:

FOO  EQU  -10000000

It does not matter to EQU that there is no such number as -10000000 in
8088 assembly language; if EQU is not able to readily interpret its
argument (-10000000) as a byte or a word, it simply treats it as a text
string.  Then, wherever it finds the string "FOO" in the program, it
will replace it with "-10000000".  At that point, of course, the
assembler itself is likely to discover an error -- however, this
doesn't matter to EQU, which performed its function (namely, simple
text substitution) perfectly.  This principle can be extended farther:
EQU doesn't even necessarily need a number.  We could have something
like

FOO  EQU  BYTE PTR [BP+6]

if we wanted.  This does not load FOO with the value at [BP+6]; rather,
it replaces the string "FOO" with the string "BYTE PTR [BP+6]".
Actually, this is very convenient for us.  Instead of the above form of
myproc_procedure, we could write

; Procedure called by the myproc macro:
myproc_procedure proc    far

push      bp        ; push bp, since we'll use it.
mov       bp,sp

c         equ       byte ptr [bp+6]

putchr    c         ; display the character.

pop       bp        ; restore bp before quitting.
ret       2         ; return and pop the argument.

myproc_procedure endp

Here, there is absolutely no doubt that "putchr c" corresponds to
"write(c)" in Pascal.  Of course, for a tiny program like this, using
the EQU as we have is a bit of overkill.  For a more complex procedure,
however, this trick is indispensible, since it means that our code can
be understood and debugged much more easily.
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Indeed, the EQU trick is even more necessary when our procedure
has local variables.  For instance, suppose we had a program like

procedure myproc(n:integer; c:char);
var i:integer;
begin

for i:=n downto 1 do write(c)
end;

which displays n c's on the screen.  Here, we not only have two
arguments, but also a local variable i.  Just as arguments are kept on
the stack above the return address of the procedure, local variables
are kept on the stack below the return address.  For this example, our
stack might look like this:

(bottom of stack) ... , n, c, return address, i

This is not to imply that i is necessarily at the top of the stack:
for example, if we call some other procedure inside MYPROC, its return
address would have to go on the stack above i.  Therefore, in order to
avoid having i written over by a PUSH or a CALL, we must move the stack
pointer past i at the very beginning of the procedure.  (Otherwise,
anything pushed onto the stack would overwrite one of our local
variables.)  Here is a sample hand-compilation of myproc.  Again, we
use both a macro and a procedure, on the grounds that "myproc(n,c)" in
Pascal would simply be replaced by "myproc n,c" in assembler:

myproc    macro     n,c
mov       ax,n           ; push the first argument.
push      ax
mov       al,c           ; push the second argument.
push      ax
call      myproc_procedure
endm

myproc_procedure proc    far
sub       sp,2           ; move the stack pointer past i.
push      bp             ; save the old value of bp.
mov       bp,sp

; Use the EQU trick to set up variables:
i         equ       word ptr [bp+2]
; [bp+4] and [bp+6] give the return address.
c         equ       byte ptr [bp+8]
n         equ       word ptr [bp+10]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The actual algorithm:

mov       ax,n           ; get ready for the for-loop by
mov       i,ax           ; doing i:=n

for_loop:
cmp       i,1            ; i down to 1 yet?
jb        done           ; if yes, quit.
putchr    c              ; display the character.
dec       i              ; continue the count down.
jmp       for_loop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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; Exit point of the procedure.
done:     pop       bp

add       sp,2           ; get rid of i
ret       4              ; pop the arguments.

myproc_procedure endp

As usual, a real compiler might behave somewhat differently.  For
example, it might push BP onto the stack and define the local variables
below BP (rather than define the local variables and then push BP).
For FORTRAN, the local variables might not even be on the stack since
FORTRAN subroutines cannot be recursive and therefore do not need this
kind of storage maneuver.

There are several points worth noting about the above translation.
First, aside from the tricky stuff with BP, SP, and EQU at the
beginning and end, the translation of the procedure itself was quite
straightforward.  Indeed, there was almost nothing to think about.  The
most difficult thing we had to manage was the memory-to-memory move
required by the Pascal statement i:=n.  Apparently, we will always
treat integer variables as word-size memory variables, and ignore the
registers of the CPU as much as possible.  Therefore, the process of
hand-translation continually involves us in memory-to-memory operations
for which we have no 8088 instructions.  We could save ourselves a lot
of trouble if at the outset we simply define some macros that fake
memory-to-memory instructions.  For example, we might have

; Memory to memory MOV operation:
move macro     var1,var2

mov       ax,var2
mov       var1,ax
endm

; Memory to memroy CMP operation:
compare macro  var1,var2

mov       ax,var2
cmp       var1,ax
endm

Indeed, with the regularity of these macros it is almost impossible not
to notice that we can define a memory-to-memory macro that "fakes" all
memory to memory instructions.  Such a macro is similar in concept to
the generic NEAR conditional jump macro JP.  What we would like is a
macro called, say, MEMORY, which is used like this:

MEMORY    ADD,VAR1,VAR2       ; add VAR2 to VAR1.
MEMORY    CMP,VAR1,VAR2       ; compare VAR2 to VAR1.
MEMORY    MOV,VAR1,VAR2       ; move VAR2 to VAR1.
etc.

In fact, such a macro is very easy to define:

; Memory to memory instruction macro:
memory    macro     mnemonic,var1,var2

mov       ax,var2
mnemonic  var1,ax
endm
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With this macro we are willing to dare even more:  a for-to-do loop
instead of a for-downto-do loop:

for i:=1 to N do write(c)

The middle part of our program would simply change to

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov       i,1            ; prepare for the loop.

for_loop:
memory    cmp,i,n        ; done?
ja        done           ; if yes, then exit from loop.
putchr    c              ; display the character.
inc       i              ; and iterate.
jmp       for_loop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

A second point to consider, though, is that however easy we find it to
make this translation, it is likely that in some cases we will want to
check out our translated program to see about removing some of the
inefficiencies our straightforward translation may have introduced.  In
this case, for example, we could stick with our original downto loop
and to eliminate the i variable altogether in favor of CX as a counter.
In that way we could use the built-in LOOP command as well.  In many
cases, however, the straightforward translation will be good enough in
spite of the inefficiencies, or with just a small part of the program
needing optimization.  In the example we have been looking at, the few
microseconds of inefficient code we have introduced are insignificant
next to the hundreds of microseconds required by PUTCHR to display the
character, so it would be silly to replace i with CX as suggested a
moment ago.  In general, only code inside a loop that must execute many
times, very quickly, should be so optimized.

Let's look at some more Pascal constructs.  Consider the problem
of averaging together all of the elements of an integer array, stopping
when the number -666 (minus the "number of the beast") is discovered:

type integer_array=array[1..M] of integer;

procedure average(    a       :integer_array;
var result  :integer);

var i:integer;
begin

i:=1;
result:=0;
while a[i]<>-666 do
begin

result:=result+a[i];
i:=i+1

end;
result:=result div (i-1)

end;

Here, we see three new features.  One, the WHILE-DO differs so little
from the FOR-DO that there is no reason to discuss it.  Two, the fact
that RESULT is a "variable parameter" means that its value should be
returned to the main program.  A real compiler would simply pass the
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address of RESULT as an argument to AVERAGE rather than passing
RESULT's actual value.  For us this would be rather inconvenient since
we couldn't use our EQU trick any more.  Therefore, we will do the
following:  We will pass the value of RESULT on the stack, but with the
proviso that it should not be removed from the stack when average
returns.  Therefore, we should push this argument on the stack first
and only do a RET 2 rather than a RET 4 at the end.  The trickiest part
is what to do about the array a[i].  Clearly, we want to pass the
offset of the array on the stack as an argument.  As usual, we want to
do with with a macro, so that we could simply substitute "average a,r"
wherever the original Pascal has "average(a,r)":

average   macro     array, result
mov       ax,result           ; pass result first.
push      ax
mov       ax,offset array     ; pass the array next.
push      ax
call      average_procedure
pop       ax                  ; and return the result.
mov       result,ax
endm

The real question is what to do about the array once we get inside
average_procedure.  There is no good answer to this that I know of
(that is, no answer that ends up looking much like Pascal).  We could
have a macro that computes the address of an array element given the
offset of the array and the index, and stores this address in (say) SI.
For example, something like this:

element   equ       word ptr [si]

; Compute address of a[i]:
index     macro     array,i

mov       si,i                ; get index 1,2,3,...
dec       si                  ; convert to 0,1,2,...
shl       si,1                ; convert to 0,2,4,...
add       si,array            ; add to base address.
endm

With this, we could simply use the word ELEMENT wherever we might be
inclined to use a[i], so long as we had first executed "INDEX A,I".
Here is how average_procedure might look in assembler if we employ this
approach:

average_procedure proc far
sub       sp,2           ; move past local variable i.
push      bp
mov       bp,sp

; The arguments and local variables:
i         equ       word ptr [bp+2]
; bp+4 and bp+6 point to the return address.
a         equ       word ptr [bp+8]
result    equ       word ptr [bp+10]
; Also define this shorthand for [bx+si], which addresses a[]:
element   equ       word ptr [si]
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov       i,1            ; i:=1;
mov       result,0       ; result:=0;

while:
index     a,i            ; compute SI for a[i]=a_elt.
cmp       element,-666   ; a[i]<>-666?
je        done_while     ; if equal, then exit while.
memory    add,result,element ; result:=result+a[i].
inc       i
jmp       while

done_while:
mov       ax,result      ; get ready to divide result
mov       dx,0           ; by i.
dec       i              ; i:=i-1.
div       i
mov       result,ax      ; and save result.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Exit point of the procedure.
pop       bp
add       sp,2           ; move past local variable i.
ret       2              ; POP just one argument.

average_procedure endp

As before, there is certainly room for improvement in this translation.
For example, instead of executing "INDEX A,I" every time through the
loop, it would be faster to just do "MOV SI,A" before the loop begins
and to add two to SI every time through the loop.  Whether such changes
are worthwhile depends entirely on the application.  The point, of
course, is that you have to have a working program before you can
decide whether to optimize it!  Hand-compilation gives a quick way of
getting the initial working program.
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MID-TERM PROJECT ASSIGNMENT FOR CS-5330

You are to write a sorting program.  This program will read a text
file from the disk, sort it so that the lines of text are in ascending
alphabetic order, and then write the sorted file to disk.  As a
concrete example, suppose we have a file UNSORTED.TXT containing the
lines

Moon, Alfred        77 Wacker Rd., Chicago, IL
Feynman, Richard    California Institute of Technology
Burkey, Ronald S.   U. of Texas at Dallas
Reagan, Ronald      White House, Washington, D.C.

which (we might suppose) is a mailing list.  From this file, we want to
create a file of the sorted lines (say, SORTED.TXT):

Burkey, Ronald S.   U. of Texas at Dallas
Feynman, Richard    California Institute of Technology
Moon, Alfred        77 Wacker Rd., Chicago, IL
Reagan, Ronald      White House, Washington, D.C.

Your program, which will be called MID-TERM.ASM, will be used to sort
these files in the following way:

MID-TERM <UNSORTED.TXT >SORTED.TXT

That is, rather than explicitly opening (or creating) and closing the
files, you will use the predefined input and output handles (the
"standard input" and "standard output"), and will specify the
appropriate files by means of I/O redirection.  There is a built-in
program in MS-DOS (called SORT.EXE rather than MID-TERM.EXE) which
works in exactly this way, which you can experiment with.  You will
read the entire file into memory with a single read operation before
sorting.  If the file is too big to fit into the provided space, you
will provide an appropriate error exit and message.  All messages
displayed by your program must go to the "standard error" predefined
handle; if you fail to do this, the message will be redirected and
stored in the output file.

You will not rearrange the text in memory (since this is a rather
time-consuming process).  Instead, you will maintain an array of
pointers to the lines of text and will rearrange the pointers rather
than the text lines themselves.  Therefore, three distinct tasks remain
after reading the text into memory.  First, you must process the text
to create the array of pointers; we will call this the PROCESS STEP.
Second, you must sort; we will call this the SORT STEP.  Third, you
must write the sorted text to disk.  Once the format of data storage in
memory is understood, the latter step should be no difficulty (being
quite similar to earlier assignments) and should require no further
discussion.  The PROCESS and SORT STEPs will be further described
individually, however.

You should not attempt to write and debug the entire program at
once.  At first, you should completely leave out the SORT STEP.  This
intermediate program (without sorting) will be easy to test, since it
will simply be a file-copy program.
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The PROCESS STEP.  When we get to the SORT STEP, we will find it
convenient to have previously calculated (and stored in memory) the
length of each text line -- rather than simply to have the lines
terminated with CR/LFs as they are when read in from the disk.  For
convenience, we will impose the condition that all lines contain
between 0 and 255 characters.  Lines longer than 255 characters will be
truncated.  This means that a byte variable suffices to hold the line
length.  We will insist that this byte count be stored in the byte
immediately preceding the line.  Denoting the line length by "<COUNT>",
the PROCESS step consists of converting a line like

This is the forest primeval<CR><LF>

to

<COUNT>This is the forest primeval

Also, a pointer to this string (i.e., a word whose value is the offset
of <COUNT>) must be added to the end of the pointer array.  In the
example shown, <COUNT> is 27 since the line (exclusive of the CR/LF)
contains 27 characters.  This can, perhaps, be made clearer by
considering a fictitious example in which a data structure such as the
one we are considering has been set up by means of DBs and DWs rather
than by calculation:

; Sample data structure of strings pointed to by a pointer array.
; The strings:
STRING2   DB   27,"No it's not, it's Cleveland"

... (Anything) ...
STRING1   DB   27,"This is the forest primeval"

... (Anything) ...
STRING3   DB   19,"Somebody's confused"

.

.

.
; The pointer array:
POINTERS  DW   OFFSET STRING1

DW   OFFSET STRING2
DW   OFFSET STRING3
.
.
.

Fortunately, no movement of the text is needed to set up this data
structure.  There is at least one usable byte for the count in front of
every text line (except the very first line) since there must be a
carriage return (which we don't need in our data structure) at the end
of the preceding text line.   Since we have pointers to the strings, we
don't care about the exact placement of the strings in memory, nor
about the relative positions of the strings, nor about garbage between
the strings (such as carriage return characters).

The pointer array is much like the buffer we used in our simple
typewriter program (except that it holds words rather than bytes), so
you must provide an appropriate error message and exit in case there
are more lines of text in the file than you have provided for in your
array.  I would suggest that (throughout the PROCESS STEP) BX be mainly
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used to address the pointer array and SI/DI to address the text, since
SI and DI are heavily used by the built-in string operations.

The SORT STEP.  Sorting will be handled as follows.  You will
define a macro

SORT NUM_LINES, POINTERS

which PUSHes the word NUM_LINES onto the stack, then PUSHes OFFSET
POINTERS onto the stack, and then CALLs the externally defined (i.e.,
separately assembled) FAR procedure SORT_ARRAY.  NUM_LINES and OFFSET
POINTERS, in fact, constitute all of the information needed by the
sorting procedure, if NUM_LINES gives the number of lines and POINTERS
gives pointers to those lines.  These quantities are arguments of
SORT_ARRAY and must be removed from the stack by SORT_ARRAY.

You are free to use any sorting algorithm (except the Bubble Sort)
in writing the routine SORT_ARRAY, just so long as your routine obeys
the calling conventions mentioned above.  (This means that the main
programs and sorting procedures of everyone in the class will be
interchangeable, in the sense that any of you could link your main
programs to the sorting routine of another student in the class, or to
my sorting procedures.  After the mid-term project has been turned in,
we will have a contest between all of the sorting routines and
distribute copies of the fastest to everyone in the class -- if the
author doesn't object.)  I would be particularly interested in seeing a
Quicksort implemented.  However, if you are not adventurous enough (or
foolhardy enough) to work so independently, see the next paragraph.

PRETESTED SORTING ALGORITHMS.  I can give you the Pascal source
code for your choice of the following algorithms:  Selection Sort,
Insertion Sort, Heapsort, and Shellsort.  Of these, Insertion Sort will
be the easiest to handle and Heapsort the most difficult.  The Pascal
source code can be straighforwardly "hand compiled" to assembly
language as described in class.  Unlike the procedures required by our
project, however, these algorithms all assume that the given array
contains integers to be sorted (rather than pointers to strings to be
sorted).  Do not let this worry you.  You should hand-compile and test
your chosen procedure (by actually sorting integer arrays).  Only
convert the procedure to string form after this testing is done.  The
conversion to string form is actually quite easy.  The only necessary
changes are to certain comparison operations (which are indicated by
comments in the Pascal code).  These comparisons are always of the form

COMPARE       variable1,variable1

where the operands are integer memory-variables and the COMPARE macro
is as described in class.  You simply need to write a macro (called,
say, CMP_S) which is used exactly like COMPARE, but assumes that the
values of variable1 and variable2 are the offsets of the strings to be
compared rather than integers to be themselves compared.  Replacing
COMPARE with CMP_S in the selected places mentioned before completely
converts any integer sorting routine to a string-sorting routine.

If the comments above on converting Pascal integer-sorting
routines to Assembler string-sorting routines don't seem clear to you,
a sample bubble-sort conversion will be posted on my office door.
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Unlike the homework assignments, no sample solution of the entire
problem will be posted.  However, various hints will posted (such as
the sample Bubble Sort mentioned above) and, as usual, I will be
willing to discuss the problem (and your bugs) with you.
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SOME INTERNAL SORTING METHODS

The information below is extracted from volume 3, Sorting and
Searching, of D. E. Knuth's "The Art of Computer Programming" series.
N represents the number of records sorted.  The timing and program size
(=programming difficulty) figures are based on programs written in the
"MIXAL" language, which is the assembly language for a fictitious
computer (invented by Knuth) called "MIX".  However, the information
should be representative of what we would find in 8088 assembler as
well.  The list below includes algorithms we will use for the mid-term
project, but does not (in any sense) exhaust the known sorting
algorithms.  The methods are arranged roughly in decreasing order of
execution time when sorting a randomly ordered list.  Average and
maximum running times are theoretically derived.  The N=16 and N=1000
running times are empirical averages.

Program       Running Time (in MIX clock cycles)
Method         Size       Average       Maximum    N=16   N=1000

Exchange Selection   --         5.75N2        7.5N2      --      --
(Bubble Sort)
Straight Selection   15      2.5N2+3NlnN     3.25N2     853    2525287
(Selection Sort)
Straight Insertion   12         2N2+9N         4N2      494    1985574
(Insertion Sort)
Heapsort             30     23.08NlnN+0.2N   <26NlnN   1068     159714
Diminishing
Increment Sort       21         15N1.25      cN1.5?     567     137502
(Shellsort)
Partition-
Exchange Sort        63     11.67NlnN-1.74N   >2N2      470      81486
(Quicksort)
Median-of-3         100     10.63NlnN+2.11N    >N2      487      74574
Quicksort

NOTES:
1.   The Bubble Sort is the most widely taught sorting algorithm.  It has the

distinction of being the worst sorting algorithm ever invented.  The best
thing that can be said about it is that it is only slightly more difficult
to program than the Insertion Sort.  Help stamp out this vicious bubble-
sort menace today!  (It goes almost without saying that this is the
algorithm chosen by our textbook.)

2.   The Insertion Sort is the easiest algorithm to program, and is quite good
for small lists or for lists that are nearly in order to begin with.

3.   The Heapsort is the simplest sorting method (and the only one on our list)
guaranteed (even in the worst case) to run in a time proportional to N ln
N.

4.   The Shellsort is the best bargain in time/programming-effort tradeoff, but
the running time has been derived empirically rather than by analysis --
there is no guarantee of good performance.

5.   The Quicksort is the fastest (on the average) and possibly the most widely
used sorting algorithm.  However, it has a terrible worst-case running
time (the worst case being an already-sorted file) and is rather tricky to
program.  Moreover, being recursive, it can require up to N additional
words on the stack in the worst-case.
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PASCAL SOURCE:  DISPLAY N COPIES OF THE CHARACTER C

procedure myproc(n:integer; c:char);
var i:integer;
begin

for i:=n downto 1 do write(c)
end;

ASSEMBLY SOURCE FOR SAME FUNCTION

; Macro to CALL the procedure which mimics the Pascal procedure.
; Any place the Pascal call "MYPROC(N,C)" would be used, we use
; the assembly statement "MYPROC N,C".

myproc    macro     n,c
mov       ax,n           ; push the first argument.
push      ax
mov       al,c           ; push the second argument.
push      ax
call      myproc_procedure
endm

; Procedure to mimic the Pascal procedure.  Called only through the
; macro MYPROC.

myproc_procedure proc    far
sub       sp,2           ; move the stack pointer past i.
push      bp             ; save the old value of bp.
mov       bp,sp

; Use the EQU trick to set up variables:
i         equ       word ptr [bp+2]
; [bp+4] and [bp+6] give the return address.
c         equ       byte ptr [bp+8]
n         equ       word ptr [bp+10]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The actual algorithm:

mov       ax,n           ; get ready for the for-loop by
mov       i,ax           ; doing i:=n

for_loop:
cmp       i,1            ; i down to 1 yet?
jb        done           ; if yes, quit.
putchr    c              ; display the character.
dec       i              ; continue the count down.
jmp       for_loop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Exit point of the procedure.
done:     pop       bp

add       sp,2           ; get rid of i
ret       4              ; pop the arguments.

myproc_procedure endp
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PASCAL CODE
{ Pascal code to average elements of an integer array until -666. }
procedure average(a:array[1..M] of integer;    var result:integer);
var i:integer;
begin

i:=1;  result:=0;
while a[i]<>-666 do

begin  result:=result+a[i];  i:=i+1  end;
result:=result div (i-1)

end;
ASSEMBLER CODE

; Macro used any place Pascal would use the procedure AVERAGE.
average   macro     array, result

push      result              ; pass result first.
mov       ax,offset array     ; pass the array next.
push      ax
call      average_procedure
pop       result              ; and return the result.
endm

; Compute address of a[i].  ARRAY is supposed to be an integer
; variable containing the address of a[1].
index     macro     array,i

mov       si,i                ; get index 1,2,3,...
dec       si                  ; convert to 0,1,2,...
shl       si,1                ; convert to 0,2,4,...
add       si,array            ; add to base address.
endm

; The actual procedure which mimics Pascal:
average_procedure proc far

sub       sp,2           ; move past local variable i.
push      bp
mov       bp,sp

; The arguments and local variables:
i         equ       word ptr [bp+2]
a         equ       word ptr [bp+8]
result    equ       word ptr [bp+10]
element   equ       word ptr [si]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

mov       i,1            ; i:=1;
mov       result,0       ; result:=0;

while:    index     a,i            ; compute SI for a[i]=a_elt.
cmp       element,-666   ; a[i]<>-666?
je        done_while     ; if equal, then exit while.
memory    add,result,element ; result:=result+a[i].
inc       i
jmp       while

done_while:
mov       ax,result      ; get ready to divide result
mov       dx,0           ; by i.
dec       i              ; i:=i-1.
div       i
mov       result,ax      ; and save result.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pop       bp ; Exit point of the procedure.
add       sp,2           ; move past local variable i.
ret       2              ; POP just one argument.

average_procedure endp
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LECTURE NOTES FOR CS-5330:  IBM PC ASSEMBLY LANGUAGE
UNIVERSITY OF TEXAS AT DALLAS

CLASS 12

Comments

1.  As far as the mid-term is concerned, let me repeat my policy on
sorting algorithms.  You can use any algorithm you like (except the
Bubble Sort), or you can use one of the Pascal algorithms I am handing
out at this instant.  You can either write the algorithm directly in
assembler, or you can use the translation techniques I have discussed
and will continue to discuss today.  Using my translation techniques
would probably be the easiest thing to do.

Review
In the previous lecture, we briefly discussed sorting algorithms,

but the bulk of the lecture was spent discussing "hand-compilation" or
translation of higher-level languages to assembler.  The sample higher-
level language used was Pascal, although it could really have been
FORTRAN, C, or any other (similar) compiled language.

What we basically found was that, except for tricky program
headers, variable declaration, and program termination, we were able to
rather straightforwardly translate our procedures.  Each Pascal
procedure was converted in two parts:  first, we wrote an actual
assembler procedure which was functionally the same as the Pascal
procedure; second, we wrote a macro to make the calling sequence of the
assembler procedure very similar to that of the Pascal.  For example, a
Pascal procedure call

sort(a,b)

would be turned into a macro with a syntax like

sort a,b

which would in turn call a procedure (say, SORT_ARRAY) that does the
actual work.  For us, each Pascal procedure corresponds to a FAR PROC,
and all arguments to the FAR PROC are passed on the stack.  Thus, the
covering macro (in this case, SORT) basically does nothing more than
PUSH the arguments (or POP them if they contain return values).

Not only are arguments to procedures passed on the stack, but they
remain there throughout the execution of the procedure.  Moreover,
local variables of the procedure are also stored on the stack.  (Not to
mention the return address of the procedure and any other variables
pushed onto the stack.)  Because of all of this, we needed a better way
to address the stack than we were using previously -- i.e., better than
pushing and popping.  The answer to this was that the BP register was
ideal for addressing the stack since it acts just like the BX, SI, and
DI registers, except that its default segment was the stack segment
rather than the data segment.

A typical beginning for a translation of a Pascal procedure was
therefore something like this:
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PUBLIC    name
CODE SEGMENT

ASSUME    CS:CODE
name PROC      FAR

SUB       SP,2*NUMBER_OF_LOCAL_VARIABLES
PUSH      BP
MOV       BP,SP

where the "SUB SP,..." instruction is used to make room on the stack
for the local variables.  A typical ending for a translated procedure
was

POP       BP
ADD       SP,2*NUMBER_OF_LOCAL_VARIABLES
RET       2*NUMBER_OF_ARGUMENTS

name ENDP
CODE ENDS

END

where the RET statement pops all of the arguments off of the stack, as
well as removing the return address of the procedure.  With this kind
of stack usage, [BP] refers to the old value of BP, which was pushed on
the stack, [BP+2] refers to the first local variable, [BP+4] refers to
the second local variable, ... , [BP+N] refers to the last local
variable, [BP+N+2] refers to one word of the return address, [BP+N+4]
refers to the second word of the return address, [BP+N+6] refers to the
last-pushed argument, etc.  As a concrete example, for a procedure with
the two local variables I and J, and the argument K, [BP+2] would be I,
[BP+4] would be J, and [BP+10] would be K.  A trick we can use to
simplify the work for ourselves is to actually define these
relationships to hold, using EQU pseudo-ops:

I    EQU  WORD PTR [BP+2]
J    EQU  WORD PTR [BP+4]
K    EQU  WORD PTR [BP+10]

While all of this is rather confusing, we found that by setting up
our procedures like this, we could write various macros that made our
assembler programs look very much like the original Pascal.  Clearly,
since all of the variables correspond to memory variables rather than
register variables, our translation work is simplified by macros that
mimic memory-to-memory instructions (which are not present in the 8088
instruction set).  The macros

MOVE      VAR1,VAR2           ; MEMORY-TO-MEMORY MOV.
COMPARE   VAR1,VAR2           ; MEMORY-TO-MEMORY CMP.
MEMORY    MNEMONIC,VAR1,VAR2  ; "GENERIC" MEMORY-TO-MEMORY INST.

were very helpful.

More Thoughts on Hand-Compilation

With all our efforts in the last class directed towards
simplifying macros for the body of our program, we found that we were
able to write rather simple programs -- with extremely tricky and
confusing preliminary and terminating code appended to it.  In the
array-averaging example we did last time, the actual translation of the
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Pascal algorithm required 14 lines of code (one of which was simply a
label), while the "supporting" assembly code defining the procedure and
setting up the BP register and the variables, etc. was 17 lines (not
including comments or an INCLUDE statement).  This is not what we would
ordinarily think of as being a very desirable situation (except that
it's better than 45 lines of algorithm and 17 lines of supporting
code).

Fortunately, there is nothing to keep us from inventing algorithms
to do away with the complex supporting code.  To see how this might be
done, let's start with the code that we have to use to terminate our
assembler routine.  This code looks something like this:

POP       BP
ADD       SP,2*NUMBER_OF_LOCAL_VARIABLES
RET       2*NUMBER_OF_ARGUMENTS

name ENDP
CODE ENDS

END

If we introduce a macro like

RETURN MACRO   NAME,NUMVARS,NUMARGS
POP       BP
ADD       SP,2*NUMVARS
RET       2*NUMARGS

NAME ENDP
CODE ENDS

END
ENDM

then we can simply terminate our separately assembled routine with the
line

RETURN    PROCNAME,NUMVARS,NUMARGS

assuming that this was the only procedure in the file.

Similar comments apply if we try to invent a macro to begin our
program and a macro to define our variables.  Such macros are slightly
tricky to write (and there's no particular reason to discuss them in
detail), so let's just assume from now on that there is a macro

BEGIN     PROCNAME,NUMVARS

which can be used at the beginning of the procedure to eliminate the
PUBLIC, SEGMENT, ASSUME, and PROC statements, as well as the
initialization of BP and SP.  The definition of such a macro is posted
on my office door.  Similarly, let's suppose that there is a macro

VAR       VARNAME[,TYPE]

which defines a local variable or a procedure argument, and replaces
the EQU statement we have been using so far.  In this case, the TYPE
argument is either BYTE or WORD (with the default being WORD).  Such a
macro must clearly maintain an internal counter so that successive uses
of the macro will define variables at successive locations on the
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stack.  (For convenience, the BEGIN macro initializes this counter, so
that BEGIN must be used before VAR.)  We also need a way to skip past
the return address, which is also on the stack.  Using VAR without an
argument skips past one word on the stack, but defines no variable, so

VAR
VAR

skips past the return address.

Let's see how these concepts can be applied to an actual
procedure.  An example similar to those used in the previous class is:

procedure myproc(n:integer; c:char);
var i:integer;
begin

for i:=1 to n do write(c)
end;

Except for an INCLUDE statement to include the macro library, here are
the entire contents of a file implementing this routine in assembler:

BEGIN     MYPROC_PROC,1   ; DEFINE MYPROC_PROC WITH 1 LOCAL VAR.
VAR       I               ; DEFINE LOCAL VARIABLE.
VAR                       ; SKIP ONE WORD OF RETURN ADDRESS.
VAR                       ; SKIP OTHER WORD OF RETURN ADDRESS.
VAR       C,BYTE          ; DEFINE THE LAST-PUSHED ARGUMENT.
VAR       N               ; DEFINE THE FIRST-PUSHED ARGUMENT.
MOV       I,1             ; PREPARE FOR THE LOOP.

FOR: COMPARE   I,N             ; END OF LOOP?
JA        DONE            ; IF YES, QUIT.
PUTCHR    C               ; DISPLAY THE CHARACTER.
INC       I               ; GO THROUGH THE LOOP AGAIN.
JMP       FOR

DONE:RETURN    MYPROC_PROC,1,2 ; RETURN, POPPING 1 LOCAL VAR., 2 ARGS.

which, we have to admit, as almost lucid compared to our normal
assembler programs.

Of, course the program would be even better if we had macros that
would make the for-loop more obvious (not that it's not obvious now).
For instance, to help out with a loop like "for counter:=start to
finish" we could define

FOR  MACRO     COUNTER,START,FINISH,LABEL
MOVE      COUNTER,START

LABEL&TOP:
COMPARE   COUNTER,FINISH
JA        LABEL&BOTTOM
ENDM

and
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ENDFOR MACRO   COUNTER,LABEL
INC       COUNTER
JMP       LABEL&TOP

LABEL&BOTTOM:
ENDM

with which our MYPROC_PROC would look like this:

BEGIN     MYPROC_PROC,1   ; DEFINE MYPROC_PROC WITH 1 LOCAL VAR.
VAR       I               ; DEFINE LOCAL VARIABLE.
VAR                       ; SKIP ONE WORD OF RETURN ADDRESS.
VAR                       ; SKIP OTHER WORD OF RETURN ADDRESS.
VAR       C,BYTE          ; DEFINE THE LAST-PUSHED ARGUMENT.
VAR       N               ; DEFINE THE FIRST-PUSHED ARGUMENT.
FOR       I,1,N,MAIN
PUTCHR    C               ; DISPLAY THE CHARACTER.

ENDFOR    I,MAIN
RETURN    MYPROC_PROC,1,2 ; RETURN, POPPING 1 LOCAL VAR., 2 ARGS.

which looks rather swell.  The purpose of the LABEL argument of the
macro is, of course, that the assembler has no immediately obvious way
of matching a particular FOR to a particular ENDFOR (if, for example,
we had nested for-loops), so the additional argument helps out in that
respect.  Similarly, for for-downto loops we can define the macros

DOWNTO    COUNTER,START,FINISH,LABEL
ENDDOWN   COUNTER,LABEL

Actually, the LABEL argument can be entirely eliminated by maintaining
an internal "stack" in the assembler.  This can be done, though not
easily and obviously, so we won't go into details.

With REPEAT/UNTIL or WHILE-DO or IF-THEN, we don't have it so
easy, since these can depend on complicated conditions that we can't
summarize quite so nicely in a macro argument.  Nevertheless, we can
still make our code look a little prettier (if not simpler) by defining
macros for them.  For instance,

REPEAT MACRO   LABEL
LABEL&TOP:

ENDM

and

UNTIL MACRO    CCC,LABEL
LOCAL     DONE
J&CCC     DONE
JMP       LABEL&TOP

DONE:
ENDM

In this case, the local label DONE takes the place of LABEL&BOTTOM and
the loop continues until the specified condition CCC applies.  (CCC
could be anything like Z, E, NZ, NE, etc.)  As before, of course, in
practice a stack could be used to automatically assign LABEL and we
wouldn't need any such argument.  We'll see in a moment how the REPEAT
and UNTIL macros can be used in practice.
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Similarly, for WHILE/DO we might define

WHILE MACRO    LABEL
LABEL&TOP:

ENDM

DO   MACRO     CCC,LABEL
LOCAL     CONTINUE
J&CCC     CONTINUE
JMP       LABEL&BOTTOM

CONTINUE:
ENDM

ENDDO MACRO LABEL
JMP       LABEL&TOP

LABEL&BOTTOM:
ENDM

With our usual comments about not using LABEL, in practice, these would
be used like

WHILE
... (code to evaluate the condition) ...
DO   ccc
... (body of the loop) ...
ENDDO

So long as the condition was satisfied, the code between DO and ENDDO
would continue to be executed.

So as not to belabor the point, let me just say that the same kind
of thing can be done to simulate the IF/THEN/ELSE structure of Pascal
in assembler.  The macros involved are MIF, MTHEN, MELSE, and MENDIF.
Notice the M's in front of the names.  These are there because the
assembler already has pseudo-ops called IF, ELSE, and ENDIF, and we
need to avoid confusion.   These macros would be used like this:  To
simulate, for example, the Pascal command "if i=1 then begin ... end
else begin ... end" we would do something like

MIF
COMPARE I,1
MTHEN
...
MELSE
...
MENDIF

As I mentioned before, some of the macros I have just shown you
can be greatly improved through tricky programming to eliminate many
extraneous arguments.  This tricky programming is not really for a
novice, particularly as it involves some things in the assembler that
we have not discussed yet.  However, these macros would be very useful
for us, so I am willing to provide them on disk to anybody who wants
them.  Also, they are posted on the door of my office and (if you are
crazy) you might enjoy trying to figure out how they work.
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FROM NOW ON, I AM GOING TO UNCONDITIONALLY ASSUME THAT THE
FOLLOWING MACROS ARE AVAILABLE  (with their argument structures
reflecting the removal of some extraneous arguments):

BEGIN     procname,number_of_local_variables
VAR       varname[,vartype]
RETURN    number_of_arguments
FOR       counter,start,finish
ENDFOR    counter[,step]
DOWNTO    counter,start,finish
ENDDOWN   counter[,step]
REPEAT
UNTIL     condition
WHILE
DO        condition
ENDDO
MIF
MTHEN     condition
MELSE
MENDIF

where, as before, condition represents Z, NZ, C, NC, etc.  The macro
MELSE is not optional.  vartype and step are optional arguments with
step defaulting to 1 and vartype defaulting to WORD.

With all of that settled, Let's look at some further examples of
hand compilation, but with some more reasonable algorithms.

EUCLID'S ALGORITHM.  Euclid's algorithm is a way of finding the
greatest common divisor of two integer numbers.  Recall that the
greatest common divisor of a number is the largest number that evenly
divides both of the two given numbers.  For example, the greatest
common divisor (or GCD) of 12 and 30 is 6.

Euclid's algorithm is often considered the oldest true algorithm.
In Pascal, here is Euclid's algorithm:

{ M and N are the given numbers, and RESULT is the GCD on output. }
procedure gcd(n,m:integer; var result:integer);
var r:integer;
begin

repeat
r:=m mod n;  m:=m div n;
if r<>0 then begin  m:=n;  n:=r  end

until r=0;
result:=n

end;

Obviously, we would be able to write a little clearer program if we had
a division macro, but since we have already introduced so many new
macros, let's just see what this program would look like with what we
have already.

First, we recall that no CODE, PUBLIC, SEGMENT, etc. statements
are needed.  We simply begin the procedure (which we'll call GCD_PROC)
with a BEGIN statement:
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BEGIN     GCD_PROC,1

where the 1 indicates one local variable.  To define the variables, we
will suppose that RESULT was the argument first PUSHed onto the stack.
The order of M and N is irrelevant since the program uses these two
variables symmetrically.  Thus, the local variables and arguments are
defined by

VAR       R
VAR
VAR
VAR       M
VAR       N
VAR       RESULT

Notice the use of VAR with no argument to indicate the position of the
return address on the stack.

The main part of the program consists of a repeat-until and a
variable assignment:

REPEAT
...
CMP       R,0
UNTIL     E
MOV       RESULT,N

while the program must end with

RETURN    2

since there are three arguments but we are only popping two because the
value of RESULT must be returned to the calling program.  It only
remains to fill in the "..." between REPEAT and UNTIL.  This part of
the program comes down to

...(some fiddling division instructions)...
MIF
CMP      R,0

MTHEN     NE
MOVE     M,N
MOVE     N,R

MELSE
MENDIF

Here, we have no code for the ELSE part, but the MELSE macro is
required.  Therefore, we leave in the MELSE and just don't put any code
between MELSE and MENDIF.

Putting all of this together in a program we get the following
masterpiece:

BEGIN GCD_PROC,1
IRP X,<R,,,M,N,RESULT>
VAR X
ENDM
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REPEAT
MOV AX,M            ; PREPARE TO DIVIDE.
MOV DX,0
DIV N
MOV R,DX            ; STORE THE REMAINDER IN R.
MOV M,AX            ; STORE THE QUOTIENT IN M.
MIF

CMP R,0
MTHEN NE

MOVE M,N
MOVE N,R

MELSE
MENDIF
CMP R,0

UNTIL E
MOVE RESULT,N
RETURN 2

There are two things of interest here.  One is the use of the IRP
pseudo-op.  The IRP pseudo-op, which has the syntax

IRP   DUMMY,<VALUE1, VALUE2, ... >
...(CODE)...
ENDM

repeats the macro body that follows (until ENDM is reached) once for
each value in the list of values enclosed in angular brackets.  Each
time, the DUMMY argument is replaced by the value.  In our case, the
IRP ... ENDM expands to

VAR  R
VAR
VAR
VAR  M
VAR  N
VAR  RESULT

and therefore saves a few lines on the page.  However, the latter form
may be clearer.

More interesting, because of our extensive use of macros, our
program no longer looks like assembly language.  Indeed, the way the
program has been formatted makes it look much more like Pascal!  In a
way, with all of our macros, we have managed to turn the assembler into
a crude compiler.

Of course, to actually go ahead and use this procedure, we would
want to write a controlling macro, say

GCD  M,N,RESULT

to call GCD_PROC, but to avoid overdoing it, we'll leave this as an
exercise for the student.

BUBBLE SORT.  As mentioned, the one sorting algorithm that you are
not allowed to use for the mid-term is the Bubble Sort (which is
discussed in the book).  Therefore, it is the one algorithm we can
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safely discuss in class.  However, I urge you never to use a Bubble
Sort in practice.

While the Bubble Sorting program given in the book (p. 174) is not
terribly complex, it is also by no means easy to understand.  From our
standpoint, of course, it also has the flaw that it uses actual data
(in the data segment) and would need additional instructions added to
interface with the calling program in the way we demand.  Let's see how
a translation of a Pascal program might look if we extensively use
macros.  Let's use the following Bubble Sort program:

_procedure_ sort(a:_array of integer_; n:_integer_);
_var_ j,t:_integer_;
_begin

_repeat
t:=a[1];
_for_ j:=2 _to_ N _do

_if_ a[j-1]>a[j] _then
_begin_  t:=a[j-1]; a[j-1]:=a[j]; a[j]:=t  _end

_until_ t=a[1]
_end_;

Of course, to effectively write this program, we must recall the scheme
we worked out to deal with array elements.  We decided that the easiest
thing to do was to use a macro to put the address of the array element
into some register (say SI), and then to access the array element with
a name like

element   equ  word ptr [si]

Of course, if ELEMENT accesses (say) a[i], then it is easy to see that
ELEMENT-2 accesses a[i-1], ELEMENT+2 accesses a[i+1], etc.  This
approach is seen in the following translated program:
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begin sort_array,2                      ; Sort_array has two local
vars.
irp x,<j,t,,,a,n>                       ; Define local variables j,t

var x                                ; and arguments a,n.
endm
element equ word ptr [si]               ; Used to address a[i].
; The ADDRESS macro used below was called INDEX in class.
repeat

address a,1                          ; Compute address of a[1].
move t,element                       ; t:=a[1].
for j,2,n

mif
address a,j                    ; Compute address of a[j].
compare element-2,element      ; If a[j-1]>a[j]

mthen a                           ; then:
move t,element-2               ; t:=a[j-1].
move element-2,element         ; a[j-1]:=a[j].
move element,t                 ; a[j]:=t.

melse
mendif

endfor j
address a,1                          ; Compute address of a[1].
compare t,element                    ; Repeat until

until e                                 ; t=a[1].
return 2                                ; return and pop two args.

Notice that in this program not one 8088 instruction appears
explicitly.
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PASCAL SOURCE CODE FOR VARIOUS SORTING ALGORITHMS

The following procedures are all taken from R. Sedgewick's book,
Algorithms, and sort arrays of integers.  The address of an array and
the number of elements of the array are passed to the routines as
•arguments.  If you want, you can translate ("hand-compile") these
routines into assembler for the mid-term project.  In each routine,
the underlined comparison should be translated into a COMPARE macro.
In order to convert the assembler versions of the routines to
string-sorts rather than integer-sorts, it is merely necessary to
change those particular uses of COMPARE into CMP_S, where CMP_S is the
string-comparison macro discussed in class.  A similar translation of
a Bubble Sort routine is posted on the door of my office.

======================================================================

{ Selection Sort procedure. }
procedure sort(a:array of integer; n:integer);
var i,k,min,t:integer;
begin
   for i:=1 to n do
   begin
      min:=i;
      for k:=i+1 to n do if a[k]<a[min] then min:=k;
      t:=a[min]; a[min]:=a[i]; a[i]:=t
   end
end;

======================================================================

{ Insertion Sort procedure. }
procedure sort(a:array of integer; n:integer);
var v,i,k:integer;
begin
   for i:=2 to n do
   begin
      v:=a[i]; k:=i;
      while a[k-1]>v do begin  a[k]:=a[k-1]; k:=k-1  end;
      a[k]:=v
   end
end;
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======================================================================

{ Heapsort procedures.  Unlike all of our other sort routines,
  the heapsort must call an auxiliary routine, DOWNHEAP. }

procedure downheap(n,m:integer; a:array of integer);
label 0;
var i,k,r:integer;
begin
   r:=a[m];
   while m<=n div 2 do
   begin
      k:=m+m;
      if k<n then if a[k]<a[k+1] then k:=k+1;
      if r>=a[k] then goto 0;
      a[m]:=a[k]; m:=k
   end;
   0: a[m]:=r
end;

procedure sort(a:array of integer; n:integer);
var i,k,t:integer;
begin
   i:=n;
   for k:=n div 2 downto 1 do downheap(i,k,a);
   repeat
      t:=a[1]; a[1]:=a[i]; a[i]:=t;
      i:=i-1; downheap(i,1,a)
   until i<=1
end;

======================================================================

{ Shellsort procedure. }
procedure sort(a:array of integer; n:integer);
label 0;
var i,k,h,v:integer;
begin
   h:=1; repeat h:=3*h+1 until h>n;
   repeat
      h:=h div 3;
      for i:=h+1 to n do
      begin
         v:=a[i]; k:=i;
         while a[k-h]>v do
         begin
            a[k]:=a[k-h]; k:=k-h;
            if k<=h then goto 0
         end;
         0:a[k]:=v
      end;
   until h=1
end;
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BUBBLE SORT

PASCAL CODE

procedure sort(a:array of integer; n:integer);
var j,t:integer;
begin

repeat
t:=a[1];
for j:=2 to N _do

if a[j-1]>a[j] then
begin  t:=a[j-1]; a[j-1]:=a[j]; a[j]:=t  end

until t=a[1]
end;

ASSEMBLER CODE, WITH MACROS

begin sort_array,2             ; Sort_array has two local vars.
irp x,<j,t,,,a,n>                  ; Define local variables j,t

var x                           ; and arguments a,n.
endm
element equ word ptr [si]          ; Used to address a[i].
; The ADDRESS macro used below was called INDEX in class.
repeat

address a,1                     ; Compute address of a[1].
move t,element                  ; t:=a[1].
for j,2,n

mif
address a,j               ; Compute address of a[j].
compare element-2,element ; If a[j-1]>a[j]

mthen a                      ; then:
move t,element-2          ; t:=a[j-1].
move element-2,element    ; a[j-1]:=a[j].
move element,t            ; a[j]:=t.

melse
mendif

endfor j
address a,1                     ; Compute address of a[1].
compare t,element               ; Repeat until

until e                            ; t=a[1].
return 2                           ; return and pop two args.
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UNIVERSITY OF TEXAS AT DALLAS

CLASS 13

Comments

1.  During this week, I would like to discuss the programming of the
8087 numeric coprocessor chip, as well as various other short,
miscellaneous topics.  This will conclude the computer-independent part
of the course.  That is, this will finish the discussion of everything
we expect to apply indiscriminately to all IBM PCs and PC clones.

2.  Next week, I will begin discussing use of the so-called "BIOS" of
the computer and direct programming of the hardware -- the video
display, the beeper, and the serial ports.  The validity of this
information can vary from one computer to the next.  Indeed, it can
vary depending on the way the computer is equipped.  In class, I will
explicitly discuss only a relatively standard configuration of an IBM
PC or a close clone.  I will attempt, in addition, to supply in
handouts similar information for TI-PCs.  (I say "attempt" because I am
simply not very familiar with these machines.)  Unfortunately, for
machines outside those mentioned I cannot begin to come up with the
necessary information.  However, learning how (for example) graphics
programming can be done on an IBM PC might be valuable in figuring out
how to do it on some similar computers.

3.  Those of you who have been religiously keeping up your macro
library (or who have acquired my macro library) have probably noticed
the main disadvantages of extensively using macros -- namely, they add
a lot to your disk space and they add a lot to the assembly time.
Let's consider, for example, my macro library, as used when assembling
the sample bubble sort program written in the last class.  My macro
library is presently about 30K, including comments.  When the bubble
sort program assembles (using the macro library) it takes 31 seconds
and gives a message "36120 bytes free".  If, on the other hand, I strip
all unnecessary text from the macro library (including comments,
multiple spaces, and leading spaces), the macro library is about 6K,
and an assembly of the bubble sort takes 22.5 seconds with "43796 bytes
free".  Clearly, it is better from the standpoint of program debugging
to have a small macro library, while from the standpoint of
documentation and maintainability it is better to have a large, well
commented, and pretty-printed macro library.  The answer is that you
should keep two copies of the macro library.  You should keep a nice
(large) copy with a lot of comments and nice punctuation on an
"archive" disk which you don't use for program development.  You should
keep a "lean" version without any unnecessary text on your program
development disk.  For any of you who want to do this, I have a program
which can be used to automatically strip away comments and so forth,
creating the "lean" version of the library from the fully commented
version.  Whenever you want to modify the macro library you should edit
the "full" library, and then (once the modifications are tested) create
a new "lean" version with the stripping program.

4.  On the homework.
a)   If you intend to simply copy the answers out of the book,

don't bother.  I don't object to you doing this, and it won't
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count against you.  However, don't waste my time by making me
look at it.

b)   On BX and BP.  The only allowed addressing modes using two
registers use the BX+SI, BX+DI, BP+SI, or BP+DI registers.
There are no other allowed combinations.  However, if a valid
combination is used, they can be used like [BX+SI], [BX][SI],
etc.

c)   On LEA.  The big difference between instructions like "MOV
AX, OFFSET FOO" and "LEA AX,FOO" is that the first calculates
the number to be stored in AX at assembly time and the second
calculates it at run time.  This means that LEA is more
flexible.  For example, it can be used to compute addresses
of data items like "LEA AX,FOO[SI]" and "LEA AX,FOO[SI][BX]".
Indeed, it is not necessary for AX to even represent an
address.  An instruction like "LEA AX,[BX+SI+5]" could be
viewed as an addition instruction in which two registers and
an immediate value are added to give the value of a third
register!

d)   I found most of your problems 9 very irritating.  The program
in the book, which most of you imitated, ran like this:

TEST AX,0FFFFH
JZ   NORM
MOV  CX,15

NEXT_BIT: JS   NORM
SHL  AX,1
LOOP NEXT_BIT

NORM:

This is not a good program.  The worst thing about this
program is the LOOP, which is totally unnecessary.  (Since we
have previously checked to make sure that AX is not zero, we
know that the JS instruction will always terminate the loop.
It is not necessary to maintain a count for this.)  Here is a
better program:

TEST AX,AX
JLE  NORM

NEXT_BIT: SHL  AX,1
JNS  NEXT_BIT

NORM:

Review

In the previous lecture, we concluded our discussion of the use of
macros in hand-compilation of Pascal (or other types of programs) into
assembly language.  We found that, in addition to the memory-memory
macros introduced earlier, it was also possible to define macros that
automated translation of many other language features.

We introduced a BEGIN macro to automate writing program headers.
We saw a RETURN macro that automated the termination of programs.  We
saw the VAR macro that automatically declared variables for us.  These
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particular macros were used only in separately assembled subroutines
and not in the "main" program.

For putting "structure" into our programs, we found that it was
possible to have macros which simulated the FOR/TO/DO, FOR/DOWNTO/DO,
REPEAT/UNTIL, WHILE/DO, and IF/THEN/ELSE structures in Pascal.

Taking all of these things together (including any other
simplifying macros that take our fancy), we saw that it is often
possible to write entire assembler procedures that don't explicitly
contain a single label or 8088 instruction.  In a sense, the definition
of all of these macros creates a simple Pascal-like compiler inside the
Macro Assembler, which we can use to write structured programs.  Of
course, such complete automation introduces inefficiencies in many
operations, so it is often important to analyze the resulting code
afterward to see if some kind of optimization is necessary (for small
portions of the code).

ASSIGNMENT:  Read chapters 4 and 9 in the book.

Miscellaneous Topic 1:  String Comparisons

Now let's consider another necessary component of the sorting
project:  namely, string comparisons.  We have already decided that a
"string" is to be represented (in our project) by a data structure like

STRLEN    DB   8
STRING    DB   "A String"

and that the kind of information about the string we are likely to have
handy is OFFSET STRLEN.  (This, for example, is the information
available in the "pointer array" in our mid-term project.)  This type
of data structure is actually how some compilers represent strings.
For instance, Turbo Pascal strings are stored in memory this way.

It is likely that we would want to compare our strings with a
macro like

CMP_S     <OFFSET STRING1>,<OFFSET STRING2>

This macro should return with the flags set exactly as if an integer
comparison had been done:  the conditional jumps JB, JBE, JE, etc.
should work properly if STRING1<STRING2, etc.  The greater-than and
less-than operations should be based on alphabetical order.  That is,
we want STRING1 to be less than STRING2 if it would appear before
STRING2 in a dictionary.  However, for our own convenience (because of
ASCII ordering), we will assume that lower-case letters are distinct
from upper-case letters and that (for example) 'A'<'a'.

Actually, there are two cases of interest:

1)   If the corresponding characters of the two strings are the same,
then the strings are equal if they are of the same length, or else
the one with the shorter length is smaller.

2)   If the corresponding characters are not all the same, the first
non-matching character determines which string is smaller.
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For example, in the strings

"I am me"
"I am me also"
"I am not"

the first one is "less" than the second since it is shorter (but
otherwise the same).  The first and second are both less than the third
since the first non-matching character of the first two ("m") is
"smaller" than the first non-matching character of the third ("n").

Let us consider a macro to do the job of string comparison for us.
Since the 8088 has some built-in string instructions, it is likely that
we'd want to use them rather than simulate them with our own
instructions.  Recall that the source string for an 8088 string
instruction is always in the data segment and that the destination
string is always in the extra segment.  We will suppose, for
convenience, that ES=DS, so no problem arises from this.  Also, we will
suppose that the CLD instruction has been used previously, so that
string operations are auto-incrementing.  (If you do not assign ES as
DS and use CLD, the macro will operate erratically and give strange
results.)

The pseudo-code for such a macro might go something like this:

{ Note that because of the way we've defined our strings, STRING[0]
is the length of the string, STRING[1] is the first character, and   

so forth. }
for i:=1 to min(string1[0],string2[0]) do

if string1[i]<>string2[i] then goto done;
{ If this point has been reached, then all of the characters match and
the only difference can be in the string lengths. }
compare(string1[0],string2[0]);
done:

Here it is assumed that both the COMPARE operation and the <> operation
set the flags properly, so that when DONE is reached all the work of
the comparison has been done.  In actual practice, the MIN operation
hypothesized above must already compare the string lengths, so we can
simply store this information and re-use it later if necessary, rather
than do the comparison again.  This involves two new instructions, LAHF
and SAHF.  LAHF saves the values of the various arithmetic flags (Z, C,
P, S, O, and H) as a byte in the AH register.  Similarly, SAHF restores
the flag values using AH.  As indicated, these instructions are good
for temporarily saving the flags, while in the meantime using
instructions that would mess up the flags if they had not been saved.

; String comparison macro:
;    SOURCE operand = address of source string.
;    DESTINATION operant = address of destination string.
cmp_s     macro     destination, source

local     done, length_ok, cmp_lengths
; Set up SI and DI to the source and destination strings:

mov       di,destination
mov       si,source
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; Perform the MIN operation from the pseudo-code.  Set CL to be the ;
smaller of the two string lengths:

mov       cl,[di]        ; get destination length.
cmp       cl,[si]        ; compare to source length.
lahf                     ; save flags in AH register.
jb        length_ok      ; if CL=smaller length, then ok.
mov       cl,[si]        ; otherwise, load CL with smaller.

length_ok:
; Since I in the for-loop must start at one, eliminate the I=0 case.  ;
If the length is zero, don't do the comparison, or else we'd loop
; through 64K bytes!

or        cl,cl          ; CL=0?
jz        cmp_lengths    ; If yes, compare lengths.
xor       ch,ch          ; Otherwise, make CX=length.

; Exchange SI and DI because of the goofy "reverse" way the string
; comparison instructions work.

xchg      si,di
inc       si             ; move SI past length to string.
inc       di             ; same for DI.

; Now, compare them:
repe      cmpsb
jne       short done     ; if a non-match was found, quit.

; Otherwise, the strings completely matched, so we must use the value
; of the length comparison made earlier as our result:
cmp_lengths:

sahf                     ; restore flags from AH register.
; Exit point
done:

endm

This macro contains a number of features we haven't seen before.  For
instance, there are a couple of tricks involved.  One trick is the use
of "OR  CL,CL" to check whether CL is zero.  This has no effect on CL,
but sets the ZF flag if CL is zero.  Similarly, "XOR CH,CH" is used to
zero out CH.  These instructions are useful in some situations since
they execute in 3 clock cycles, while the more obvious "CMP CL,0" and
"MOV CH,0" execute in 4.   We also saw the XCHG instruction, which we
have not discussed before.  The XCHG instruction is exactly like the
MOV instruction except that it exchanges the values of its two
arguments rather than simply moving one to the other.

Recall our earlier definition of the strings "This is the forest
primeval", "No it's not, it's Cleveland", and "Someone's confused",
with the values OFFSET STRING1, OFFSET STRING2, OFFSET STRING3, ...
being stored in the pointer array.  A statement in our program like

CMP_S     <OFFSET STRING1>,<OFFSET STRING2>

would allow the jumps JA or JAE to be taken, but not JE or JB, since
"This is ..." is greater than "No it's not ...".  The angle brackets
are necessary here since the arguments of the macro contain spaces.

On the other hand, if BX contained 2, then POINTERS[BX] is the
address of STRING2 and POINTERS[BX+2] is the address of STRING3, so

CMP_S     POINTERS[BX],POINTERS[BX+2]
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would jump for a JB or JBE, but not for JE, JA, etc., since "No it's
not ..." is less than "Someone's confused".

This is very convenient for converting an integer-sorting routine
to a string-sorting routine.  In an integer-sorting routine, all
decisions are (or could be) made by statements like

COMPARE   POINTERS[SI],POINTERS[DI]

or

COMPARE   V,POINTERS[SI]

where V has been previously defined by

MOVE      V,POINTERS[SI]

Consequently, if POINTERS is interpreted instead as a word-array of
pointers to strings rather than as an array of integers, the
comparisons will work properly if COMPARE is replaced by CMP_S.  With a
little thought (and a listing of a sorting algorithm in front of you),
it is easy to see that such replacement of certain selected COMPAREs is
the only necessary change in the sorting algorithm.

Example:  In the Bubble-sort algorithm discussed in the previous
class, if you replace the line "COMPARE ELEMENT-2,ELEMENT" by "CMP_S
ELEMENT-2,ELEMENT", we get a string-sorting routine which should work
in the mid-term project (if you have otherwise kept to the program
specifications)!  Of course, you are not allowed to turn in a Bubble
Sort for the mid-term project -- but you might want to try it out if
you're having a little difficulty (just to assure yourself that this
problem is solvable).

Miscellaneous Topic 2:  The System Librarian, LIB

We have already seen how convenient (and easy) it can be to
modularize our program by dividing it up into procedures (each possibly
being controlled by a macro).  By deciding on a uniform interface
between procedures -- such as deciding that most procedures are FAR,
and that all parameters should be passed on the stack in a certain way
-- it is possible to actually write procedures at different times,
store them in different files, and individually assemble them whenever
we like.  Indeed, individual procedures may even be written by
different programmers, as long as each agrees to conform to the
standard interface.  The LINK program then takes care of putting all of
these routines together into a single executable (.EXE) file.

As usual, however, there is a disadvantage.  The disadvantage is
that each procedure then requires its own .ASM file and its own .OBJ
file on the disk.  The .ASM file, of course, contains the source code,
and the .OBJ file contains the linkable object code.  With all of these
.ASM files and .OBJ files floating around, the disk rapidly becomes
either full, or at least so cluttered that it's difficult to read the
directory.  Worse, at link-time (i.e., when LINK is being run) you have
to remember the name of each file containing a procedure you've used
and type it in!
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Of course, the .ASM files probably shouldn't be on your working
disk after they have been debugged:  They should be safely stored on an
"archive" disk where you won't accidentally screw them up.  (This same
comment holds for everything that you get working, such as your
homework programs, both in .ASM and .EXE form.)  However, this doesn't
solve the problem of all the .OBJ files.  For example, you already have
(at least) object files for:  a hexadecimal display routine, a lower-
to-upper-case translation routine, a decimal display routine (for those
of you using the ANSI screen driver).   Soon you will have object files
for several sorting routines (at least an integer sort and a string
sort), plus files you will have to create in conjunction with the final
project.  Each of these routines should be on the disk with the linker.
Clearly, this could quickly get out of hand.

One alternative to storing all of the object files separately on
the disk and explicitly linking these files together is combining the
object files together into a "library".  That is, the .ASM files would
still be assembled separately, creating individual .OBJ files.  But
these .OBJ files would be processed further (creating a "library") and
then be erased.  Rather than seeing a large number of .OBJ files on the
disk, we would then see just the library.  Just as the linker is able
to link together various files to create an executable program, it is
able to "search" a library for unknown symbols.  It does not link in
every routine in the library -- it just links the routines it needs
(and which are in the library).

For the sake of argument, suppose that we have written a program
(called MAIN) that uses the external routines SORT, UPCASE, and HEXDISP
(which, respectively, sort, convert to upper case, and display a
hexadecimal number).  Assuming that each program is represented by a
.OBJ file, we would normally link our program by typing

A>LINK MAIN+SORT+UPCASE+HEXDISP;

Now, if we had left out the ";" above, the linker would have gone ahead
to prompt us for various other items:  the name of the .EXE file (which
defaults to be the same as the .ASM file), the name of a .MAP file
(which is of no concern to us at present), and the names of libraries
to be searched.  The responses to all of these prompts can also be
given on the command line (if we want) by separating the responses by
commas.  For example, to create a .EXE file called TEMP.EXE, a map file
called TEMP.MAP, using a library called LIBRARY.LIB, we could say

A>LINK MAIN+SORT+UPCASE+HEXDISP,TEMP,TEMP,LIBRARY

If we don't want to answer one of the prompts, we can simply put
nothing between the commas, and the default response will be filled in.
For example, in the case above, it is more likely that we want the
program to be called MAIN.EXE and that SORT, UPCASE, and HEXDISP are
already in LIBRARY.LIB.  In that case, we could type

A>LINK MAIN,,,LIBRARY

By default, library files have the extension .LIB, and we can have
as many of them searched as we want (by giving their names, separated
by plus signs).  For example, we could have searched both LIBRARY1 and
LIBRARY2 (in that order) with
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A>LINK MAIN,,,LIBRARY1+LIBRARY2

This is all fine, except that we don't know how to get all of
these object files into libraries.

************************ WARNING *********************************
IT IS UNBELIEVABLY EASY TO SCREW UP A LIBRARY IF YOU DON'T KNOW
WHAT YOU'RE DOING.  THEREFORE, ALWAYS MAKE A BACKUP COPY FIRST!

******************************************************************

Object files are put into libraries using the utility program
LIB.EXE which is (sometimes) distributed with MS-DOS or MASM.  (For
some odd reason LIB is not uniformly available.  However, I have seen
it on some of your disks so I know that you can get a copy if you would
like to use it.)  LIB allows you to do three things.  It lets you:

+    Add a "module" to the library.  (A module is essentially the
same as an object file.)  This also creates the library file
if it did not already exist.

-    Delete a module from a library.

*    Extract a module from a library.  That is, to create an
object file which is the same as the module in the library.
The library file itself is unaffected by this.

When using LIB, each function is designated by the indicated symbol (+
- *).  The general syntax of LIB is

LIB commandstring[,listfile]

The command string is a list of libraries and object files, separated
by the function symbols mentioned above, and the listing file is a file
which contains a report on the contents of the library after these
operations are performed.  The easiest way to illustrate how these
functions work is to actually see some examples.

First, let's suppose that we have a library (or don't have a
library) called LIBRARY.LIB to which we want to add a module
represented by the file UPCASE.OBJ.  Here is a LIB command to do this:

LIB LIBRARY+UPCASE;

(The meaning of the semicolon is that no listing file is produced.)
Assuming that this operation was successful (which you shouldn't until
you have tested it), the UPCASE module is now in the library and
UPCASE.OBJ can (if you like) be erased from the disk.  Similarly, to
delete the UPCASE module from LIBRARY.LIB, we would say

LIB LIBRARY-UPCASE;

This does not create a copy of UPCASE.OBJ on the disk -- it simply
eliminates UPCASE from the library.  Consequently, if you have no other
copy of UPCASE.OBJ, you could be in trouble.  On the other hand,
extracting UPCASE from the LIBRARY with
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LIB LIBRARY*UPCASE;

would create UPCASE.OBJ.  It would also leave the library unchanged, so
that you now have two copies of UPCASE:  one on the disk and one in the
library.

You can also combine several commands in one line.  For example,

LIB LIBRARY-UPCASE+UPCASE*HEXDISP-HEXDISP;

would:  a) remove the existing copy of UPCASE (probably an old version)
from the library; b) add a new copy of UPCASE (probably an updated
version) to the library from the disk; c) create a HEXDISP.OBJ file
from a module in the library; and finally d) get rid of the HEXDISP
module from the library (but leaving the copy on disk).  It is obvious,
but note anyway that the commands "+", "-", and "*" are not related to
artithmetic commands; in particular, * does not have a higher priority
than "+" and is not automatically executed first.  The commands are
simply executed in the order they are encountered, from left to right.

As mentioned, by filling in the name of the listing file, you can
also get a report on the contents of the library.  This is probably a
good thing to do after a complicated operation like that given above.
For example, to see the report on the screen we would have replaced the
";" by a ",CON".  Of course, not having done that we could still run
LIB again to get the report:

LIB LIBRARY,CON

Another (possibly unobvious) advantage of using libraries rather
than object files is that they can save a lot of space.  Although using
the "DIR" command in DOS gives one the impression that space for files
is allocated by the byte (with no wasted space), in truth space for
files is allocated in terms of blocks of a fixed size.  For example, a
typical block size for a floppy disk is 1K, while a typical blocksize
for a hard disk is 4K.  This means that any file, no matter how small,
must occupy at least 1K.  For example, thirty .OBJ files must occupy at
least 30K on a floppy (120K on a hard disk).  Now, as it happens, .OBJ
files for individually assembled procedures are typically very small
(say, only a few hundred bytes long).  Therefore, storing them as
separate object files probably wastes 75-80% of the disk spaced use for
that purpose on a floppy (and much more on a hard disk).  In a library,
on the other hand, all of this excess space is removed.  Thus, a
library containing the thirty modules alluded to earlier might occupy
on 5 or 6K of disk space, a clear improvement.

Miscellaneous Topic 3:  Jump Tables and Call Tables

There is an assembly-language programming technique which is so
widespread and useful that it is a shame we have not had occassion to
make use of it in the assigned homework.  This is the technique of the
"jump table", and we will discuss it now.

In the homework we have seen already a number of instances of the
following programming situation.  We have some value (say, for
concreteness, a character stored in the AL register) which we would
like to test.  On the basis of the value of the character, we would
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like to perform some particular action from a list of many possible
actions.  For instance, if the character is a backspace we would like
to backspace, if it is a tab we would like to tab, etc.  A typical way
of programming this has been something like this:

CMP  AL,8           ; BACKSPACE?
JE   BACKSPACE      ; IF YES, GO ELSEWHERE.
CMP  AL,9           ; TAB?
JE   TAB            ; IF YES, GO ELSEWHERE.
CMP  AL,10          ; LINE FEED?
JE   LF             ; etc.

There is nothing particularly wrong with this (at least in the case
shown) since we only have to check a small number of alternatives.  One
potential problem, however, is that it takes longer to check for the
alternatives near the bottom of the list than it does to check for the
alternatives near the top.  If we had to perform these checks for all
255 characters, or for 1000 extended characters, the penalty in
execution time might be too large.  Another problem is simply that the
code looks bad.  It is rather spaghetti-like and difficult to follow in
some cases.  If, for example, we had written instead

CMP  AL,8           ; BACKSPACE?
JNE  NOBACKSPACE    ; IF NOT, CONTINUE.
...(CODE FOR BS)... ; OTHERWISE, PROCESS THE BACKSPACE.

NOBACKSPACE:
CMP  AL,9           ; TAB?
JNE  NOTAB          ; IF NOT, CONTINUE.
...(CODE FOR TAB)...; OTHERWISE, PROCESS THE TAB.

NOTAB:

(as, indeed, we are likely to) the program is almost impossible to
understand.

A better alternative would be to have a built-in CASE construct as
in Pascal.  For instance, if we could write

CASE AL OF
8:BACKSPACE
9:TAB
10:LINE_FEED
etc.

we could follow the code much more easily.  Fortunately, if the values
to be checked are nearly in arithmetic progression (as above with 8, 9,
10, ...) we can do something like this with the "jump table" technique.

A jump table is nothing more than a linear array of words or
doublewords representing addresses in the program.  For example,

JP_TAB    DW   BACKSPACE
DW   TAB
DW   LINE_FEED

would be a (rather short) jump-table if there actually were labels in
the program like BACKSPACE, TAB, and LINE_FEED.  (Note:  No OFFSET
operator is needed.)  In this case, we have a NEAR jump-table -- a
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table of word addresses within the segment.  If we used instead the DD
operator (rather than DW) we would have a FAR jump-table -- a table of
doubleword addresses that could be anywhere in memory.

Jump tables are useful because the addresses used in JMP or CALL
instructions can be specified directly or indirectly as well as
immediately.  (Recall that these are all addressing modes of the 8088.)
Normally, we say something like

JMP AGAIN
.
.
.

AGAIN:

This is essentially the immediate addressing mode, since the address
(which is simply a number) is specified in the instruction itself.  We
can, however, be a little trickier.  We could, for example, say

JMP JP_TAB

Since JP_TAB is not itself a label, and is instead a variable, the
assembler will interpret its value (rather than its address) as the
location to jump to.  In this case, since the value of JP_TAB is
BACKSPACE, the program will jump to BACKSPACE.  This is, of course, the
direct addressing mode.

Jump-tables really have their use, however, in indexed addressing
modes.  For example, we could have instructions like

JMP JP_TAB[SI]

which would use the value at the SI-th position of the jump-table as
the address.  For example, if SI is 0 this instruction would jump to
BACKSPACE; if SI is 2 it would jump to TAB; etc.

This fact has many potential uses.  One common use is if we write
a program which is to be used by other programs, but not to be linked
to them.  For example, we might want to write a program which we want
to load into memory to be used at various times by various programs.
Or, we might want to "call" the program from BASIC.  (Since BASIC is
interpreted rather than compiled, we could not LINK our program to
BASIC).  There is no problem with this if the program simply performs
one well-defined function.   The problem with such an idea comes if the
program performs several different functions, each with its own entry
point.  If this is the case, we have no easy way of determining the
entry points for the individual functions (except the very first, which
could be placed at the beginning).  One way out of this is to put a
jump table (containing the entry points) at the beginning of the
program, where we could easily read it from BASIC.  Alternately, a
parameter selecting the desired function could be passed as an argument
and the program itself could access the jump-table.  This is the
technique used, for example, by DOS interrupt 21H.

Another common use is in processing commands typed at the
keyboard.  For example, a typewriter program written using this
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technique might look something like this:  First, in the data segment
we might have a jump-table like

CTRL DW   BELL           ; PROCESS BELL CHARACTER, ASCII 7.
DW   BACKSPACE
DW   TAB
DW   LINEFEED
DW   AGAIN          ; DO THIS FOR ASCII CHARACTER 11.
DW   FORMFEED
DW   CARRIAGERETURN

for processing the ASCII control characters 7-13.  If we assume that
only these control characters need special processing and all others
would just be ignored, our program itself might be:

AGAIN:
GETCHR              ; GET A CHARACTER INTO AL.
CMP  AL,127         ; TOO BIG TO BE PRINTABLE?
JAE  AGAIN          ; IF YES, DO NOTHING.
CMP  AL,' '         ; PRINTABLE (IF BIGGER THAN ' ', SINCE <127)?
JB   CONTROL        ; IF NOT, MUST BE CONTROL CHARACTER.
PUTCHR              ; DISPLAY THE CHARACTER.
JMP  SHORT AGAIN    ; LOOP.

; At this point, the character is known to be a control character.
CONTROL:

CMP  AL,7           ; LESS THAN 7?
JB   AGAIN          ; IF YES, DO NOTHING.
CMP  AL,13          ; GREATER THAN 13?
JA   AGAIN          ; IF YES, DO NOTHING.

; At this point, the character is known to be in the jump-table.
; We need to convert the byte in AL, which is 7,8,...,13 to a number
; in SI which is 0, 2, 4, ..., 12:

SUB  AL,7           ; FIRST, CONVERT TO 0,1,2,...6.
SHL  AL,1           ; NOW, CONVERT TO 0,2,...12.
MOV  AH,0           ; STORE IN AX RATHER THAN AL.
MOV  SI,AX          ; STORE IN SI RATHER THAN AX.
JMP  CTRL[SI]       ; JUMP TO THE PROPER SECTION OF CODE.

;
; As a first pass, make most of the functions trivial (and not really
; necessary).
;
BELL:

PUTCHR 7            ; sound the bell.
JMP  AGAIN

;
BACKSPACE:

PUTCHR 8            ; backspace.
JMP  AGAIN

;
TAB:

PUTCHR 9            ; tab.
JMP  AGAIN

;
LINEFEED:

PUTCHR 10           ; line feed.
JMP  AGAIN

;
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FORMFEED:
ED                  ; ANSI erase display command.
JMP  AGAIN

;
CARRIAGERETURN:

PUTCHR 13           ; do both a carriage return and a line feed.
PUTCHR 10
JMP  AGAIN

Another use for the jump-table is if the table contains addresses
of procedures.  In this case, we would use a command like

CALL JP_TAB[SI]

One might think that this would use a "call table" rather than a "jump
table".  However, only the term "jump table" is in common use.

Miscellaneous Topic 4:  The Program Segment Prefix (PSP)

We have written several programs which performed I/O on files, and
so far we have seen two distinct ways of specifying filenames for our
programs.  First, of course, we saw that it was possible to simply have
our program prompt the user to enter the name from the keyboard as the
program runs.  Second, we have seen that filenames can be specified on
the DOS command line by using I/O redirection.  Of course, even though
we have never learned to do it, we know from experience that it is
possible to control our programs quite flexibly from the DOS command
line.  For example, earlier in the lecture we saw that very complex LIB
commands like

LIB MAIN+PACKED,,,LIBRARY1+LIBRARY2

can be handled entirely from the command line without any prompting by
the program.

Such tricks (as well as others we won't discuss) are performed
using something called the "Program Segment Prefix" (or PSP).  The PSP
is a 256 byte "header" that is attached to every program loaded by DOS.
The PSP helps to "interface" your program to DOS.  For example, the
various manipulations we do at the beginning of the program to store
the return address basically just save the location of the PSP.
Although we define our own stack, if no stack is defined it defaults to
being in the PSP.  In DOS 1.x (as opposed to 2.x or above, which we are
using), most disk operations used the PSP by default.  The fact of most
interest to us is that there is a buffer in the PSP which is used to
pass commands from DOS to our program.

Here are some of the items in the PSP.  Some of these things we
will discuss here, and others are included for those of you who know
more about the IBM PC or who will continue programming on the IBM PC
once this course is finished.  The latter items are starred.
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Address     Data Type           Description of Data

*       0H         WORD       An INT 20H instruction.  This is
actually the address returned to by DOS
when the RET at the end of your program
is executed.

2H         WORD       Total length of memory in paragraphs.
(A paragraph is 16 bytes.)  This count
includes the memory already used (for
example, by DOS or by your program).

*      2CH         WORD       Segment number of the "environment".
The environment contains ASCIZ strings
defined by the DOS SET command (and
other commands).

*      5CH       16 BYTES     First FCB created from DOS command line.

*      6CH       16 BYTES     Second FCB created from DOS command.

80H         BYTE       Length of the DOS command line.

81H      127 BYTES     The DOS command line itself, except for
the name of the program being executed
(which has been removed).

Only two items here are really understandable to us, given our
present knowledge.  First, the length of the computer's memory (in 16-
byte paragraphs) is given at offset=2 in the PSP.  Second, the DOS
command line -- i.e., the line you typed in response to the DOS A>
prompt -- is given beginning at offset=80H.  In order to access these
items, we merely need to know where in memory the PSP is located.

When your program begins executing, both the ES and DS registers
point to the PSP.  (Indeed, in some circumstances, even CS and SS point
to it.)  Of course, one of the first actions in our template program is
to modify DS so that it points instead to our own Data Segment.
However, ES is still pointing at the PSP, so we can address the PSP
items mentioned above using ES.  Here, for example, is how we can read
the memory size into AX:

MOV  AX,ES:2

Of course, to convert this into bytes we would need to multiply by 16,
while to convert to K we would need to divide by 64.

Of somewhat more interest is the DOS command buffer at 80H in the
PSP.  This buffer holds the last DOS command line typed (except for the
program name, which has been removed) and consequently can be used to
pass parameters or names of files to the program.  If, for example, we
typed a DOS command line of "TEST HELLO, STRANGER" (where TEST is the
name of our program), then when TEST executed it would find that the
string beginning at 81H in the PSP read " HELLO, STRANGER" (notice the
leading space) and that the count at 80H would be 16.  Here is a short
program that does nothing more than displays the command buffer:
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PUSH DS             ; SAVE DS.
PUSH ES             ; PUT ES INTO DS SINCE THE DOS DISPLAY
POP  DS             ; FUNCTION REQUIRES THE MESSAGE TO BE IN THE

; DATA SEGMENT.
MOV  AH,40H         ; DOS WRITE-RECORD FUNCTION
MOV  BX,1           ; WRITE TO STANDARD OUTPUT HANDLE.
MOV  CL,DS:80H      ; GET THE BYTE COUNT INTO CX.
MOV  CH,0
MOV  DX,81H         ; PUT OFFSET OF BUFFER INTO DX.
INT  21H
POP  DS             ; RECALL DS.

The only thing here which is possibly slightly tricky is that we have
addressed the length byte as DS:80H.  The "DS:" would appear to be a
default segment override, even though the byte is actually in the data
segment.  Actually, the "DS:" does not override the segment -- rather
it simply specifies that 80H is the address of a variable rather than
an immediate value.

In MS-DOS, only two types of information are typically passed on
the command line.  These are:

1) Names of files; and

2) "Switches".

A switch is a parameter which modifies slightly the operation of the
program.  For example, we can format a disk with

FORMAT B:

but we can format and verify the disk with

FORMAT B:/V

Here, the "/V" is a switch.  Normally, as here, switches are signified
by a preceding "/".  For your own programs, you can, of course, define
any switches you like (or none).  Here is a short sequence of
instructions to check the entered command for the switch character "/":

; CHECK FOR SWITCH CHARACTER USING 8088 STRING INSTRUCTIONS.  WE
; DO NOT HAVE TO SET ES=DS AS ABOVE SINCE WE USE THE "DESTINATION
; STRING", WHICH IS ALWAYS ADDRESSED BY ES:DI.

CLD                      ; SET STRING FUNCTIONS TO INCREMENT.
MOV  DI,81H              ; STARTING OFFSET OF STRING.
MOV  CL,ES:80H           ; GET LENGTH OF STRING INTO
MOV  CH,0                ; CX.
JCXZ NOSWITCH            ; IF LENGTH IS ZERO, THEN NO SWITCH.
MOV  AL,'/'              ; CHECK FOR "/"
REPNE SCASB              ; USING THE "SCAN" FUNCTION.
JNE  NOSWITCH            ; IF NOT FOUND, THEN NO SWITCH.

YESSWITCH:                    ; OTHERWISE,...
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PSEUDO-CODE STRING COMPARISON
{ Note that because of the way we've defined our strings, STRING[0]

is the length of the string, STRING[1] is the first character, and   
so forth.  We assume that the <> character comparison and the
COMPARE byte comparison set the flags properly. }

for i:=1 to min(string1[0],string2[0]) do
if string1[i]<>string2[i] then goto done;

{ If this point has been reached, then all of the characters match and
the only difference can be in the string lengths. }
compare(string1[0],string2[0]);
done:

STRING COMPARISON MACRO
; String comparison macro:
;    SOURCE operand = address of source string.
;    DESTINATION operant = address of destination string.
; (It might also be nice to PUSH SI and DI. )
cmp_s     macro     destination, source

local     done, length_ok, cmp_lengths
; Set up SI and DI to the source and destination strings:

mov       di,destination
mov       si,source

; Perform the MIN operation from the pseudo-code.  Set CL to be the ;
smaller of the two string lengths:

mov       cl,[di]        ; get destination length.
cmp       cl,[si]        ; compare to source length.
lahf                     ; save flags in AH register.
jb        length_ok      ; if CL=smaller length, then ok.
mov       cl,[si]        ; otherwise, load CL with smaller.

length_ok:
; Since I in the for-loop must start at one, eliminate the I=0 case.  ;
If the length is zero, don't do the comparison, or else we'd loop
; through 64K bytes!

or        cl,cl          ; CL=0?
jz        cmp_lengths    ; If yes, compare lengths.
xor       ch,ch          ; Otherwise, make CX=length.

; Exchange SI and DI because of the goofy "reverse" way the string
; comparison instructions work.

xchg      si,di
inc       si             ; move SI past length to string.
inc       di             ; same for DI.

; Now, compare them:
repe      cmpsb
jne       short done     ; if a non-match was found, quit.

; Otherwise, the strings completely matched, so we must use the value
; of the length comparison made earlier as our result:
cmp_lengths:

sahf                     ; restore flags from AH register.
; Exit point
done:

endm

SAMPLE STRING COMPARISONS:
STRING1 DB 19,"HELLO, I'M A STRING"
STRING2 DB 15,"I'M ANOTHER ONE"

CMP_S     <OFFSET STRING1>,<OFFSET STRING2>
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Sample Use of Jump Tables
; A simple "typewriter" program, using a jump table to process the
; special control characters listed below:

CTRL DW   BELL           ; PROCESS BELL CHARACTER, ASCII 7.
DW   BACKSPACE
DW   TAB
DW   LINEFEED
DW   AGAIN          ; DO THIS FOR ASCII CHARACTER 11.
DW   FORMFEED
DW   CARRIAGERETURN

AGAIN:
GETCHR              ; GET A CHARACTER INTO AL.
CMP  AL,127         ; TOO BIG TO BE PRINTABLE?
JAE  AGAIN          ; IF YES, DO NOTHING.
CMP  AL,' '         ; PRINTABLE (IF BIGGER THAN ' ', SINCE <127)?
JB   CONTROL        ; IF NOT, MUST BE CONTROL CHARACTER.
PUTCHR              ; DISPLAY THE CHARACTER.
JMP  SHORT AGAIN    ; LOOP.

; At this point, the character is known to be a control character.
CONTROL:

CMP  AL,7           ; LESS THAN 7?
JB   AGAIN          ; IF YES, DO NOTHING.
CMP  AL,13          ; GREATER THAN 13?
JA   AGAIN          ; IF YES, DO NOTHING.

; At this point, the character is known to be in the jump-table.
; We need to convert the byte in AL, which is 7,8,...,13 to a number
; in SI which is 0, 2, 4, ..., 12:

SUB  AL,7           ; FIRST, CONVERT TO 0,1,2,...6.
SHL  AL,1           ; NOW, CONVERT TO 0,2,...12.
MOV  AH,0           ; STORE IN AX RATHER THAN AL.
MOV  SI,AX          ; STORE IN SI RATHER THAN AX.

; If jump table is in code segment, use "JMP CS:CTRL[SI]" below.
JMP  CTRL[SI]       ; JUMP TO THE PROPER SECTION OF CODE.

;
; The code jumped to by the jump table:
;
BELL:

PUTCHR 7            ; sound the bell.
JMP  AGAIN
.
.
.

;
FORMFEED:

ED                  ; ANSI erase display command.
JMP  AGAIN

;
CARRIAGERETURN:

PUTCHR 13           ; do both a carriage return and a line feed.
PUTCHR 10
JMP  AGAIN



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 245/361

SLIDE

PARTIAL LAYOUT OF THE PROGRAM SEGMENT PREFIX (PSP)
Address     Data Type           Description of Data

*       0H         WORD       An INT 20H instruction.  This is
actually the address returned to by DOS
when the RET at the end of your program
is executed.

2H         WORD       Total length of memory in paragraphs.
(A paragraph is 16 bytes.)  This count
includes the memory already used (for
example, by DOS or by your program).

*      2CH         WORD       Segment number of the "environment".
The environment contains ASCIZ strings
defined by the DOS SET command (and
other commands).

*      5CH       16 BYTES     First FCB created from DOS command line.

*      6CH       16 BYTES     Second FCB created from DOS command.

80H         BYTE       Length of the DOS command line.

81H      127 BYTES     The DOS command line itself, except for
the name of the program being executed
(which has been removed).

PROGRAM TO DISPLAY THE PARAMETERS PASSED TO THE PROGRAM
PUSH DS             ; SAVE DS.
PUSH ES             ; PUT ES INTO DS SINCE THE DOS DISPLAY
POP  DS             ; FUNCTION REQUIRES THE MESSAGE TO BE IN THE

; DATA SEGMENT.
MOV  AH,40H         ; DOS WRITE-RECORD FUNCTION
MOV  BX,1           ; WRITE TO STANDARD OUTPUT HANDLE.
MOV  CL,DS:80H      ; GET THE BYTE COUNT INTO CX.
MOV  CH,0
MOV  DX,81H         ; PUT OFFSET OF BUFFER INTO DX.
INT  21H
POP  DS             ; RECALL DS.

PROGRAM TO CHECK FOR "SWITCH" CHARACTERS
; CHECK FOR SWITCH CHARACTER USING 8088 STRING INSTRUCTIONS.  WE
; DO NOT HAVE TO SET ES=DS AS ABOVE SINCE WE USE THE "DESTINATION
; STRING", WHICH IS ALWAYS ADDRESSED BY ES:DI.

CLD                      ; SET STRING FUNCTIONS TO INCREMENT.
MOV  DI,81H              ; STARTING OFFSET OF STRING.
MOV  CL,ES:80H           ; GET LENGTH OF STRING INTO
MOV  CH,0                ; CX.
JCXZ NOSWITCH            ; IF LENGTH IS ZERO, THEN NO SWITCH.
MOV  AL,'/'              ; CHECK FOR "/"
REPNE SCASB              ; USING THE "SCAN" FUNCTION.
JNE  NOSWITCH            ; IF NOT FOUND, THEN NO SWITCH.

YESSWITCH:                    ; OTHERWISE,...
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Comments

1.  Although I made a big fuss a few weeks ago over somebody crashing
my system with a program, I have done the same thing.  The SHORTLIB
program which I mentioned to you last week apparently does not run on a
TI, even though it runs on an IBM PC.  Sorry about that.

2.  As you know, we are scheduled to begin the final project next
Monday.  Some of you have ideas for projects you would like to do.  I
would like all of you to think about it and to come up with some ideas.
Don't worry if your idea might involve something we haven't discussed
in class.  I will endeavor to get you any information you need for the
project (or, at least, to help you get such information).  Don't worry
if the project seems too hard or too easy (I will decide whether it's
too hard or too easy).  Remember that you have three weeks to work on
it, so it won't be trivial by any standard.  Cooperative projects are
okay -- i.e., if you have a project which can be modularized for
several of you to work on, it might be an acceptible idea.  Here are
some reasonably fertile areas for projects:

a)   Computer graphics.  Although we have not yet discussed
graphics on the PC, we will begin to do so next week, and so
information is no problem.

b)   Additional DOS utilities.  We have already developed a "file
dump" program and a Wordstar-to-ASCII conversion utility.
There is a lot of room for improvement in this area.

c)   Additional database-type utilities.  We are in the process of
developing a sorting program.  Additional database type
utilities like file encryptors, data compression programs,
etc., would be interesting.

d)   "Infinite precision" arithmetic routines.  An "infinite
precision" arithmetic scheme does not use numbers of fixed
sized -- i.e., byte or word.  Rather, the size is adjustable.
Thus, the product of a word times a byte is 3 bytes.  Or a
product of a 50-byte number times a 75-byte number is 125
bytes.

e)   Mathematically oriented programs.  For example, programs to
locate prime numbers rapidly.

f)   Number crunching.  These are projects involving the 8087
numeric coprocessor, which we will begin discussing in a
moment.

g)   "Background" features.  Although we have not discussed
interrupts in class, there are many interesting things to be
done with interrupt-controlled features of the computer (like
real-time clocks), as opposed to programs as such.
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h)   "Device drivers".  Again, something we have not discussed in
class, although possibly the most significant feature of MS-
DOS.  An installable device driver is a way of introducing
new device names (like CON, PRN, etc.) into the system.
These "devices" have an almost unlimited range of possible
functions, and have the tremendous advantage that they can be
accessed in a uniform way (via their "filename") from any
high-level or low-level language.

i)   etc.

If you have no inclination to move out into these territories, I will
have several generic projects available, which I will assign at random.
Remember, a project you select could be much easier than one that I
select.

Review

In the previous class, we discussed several miscellaneous items.

We discussed the format used to store strings in memory in the
mid-term project.  We also discussed comparison of strings stored in
this format, and saw a macro that would do the job.

We discussed the system librarian program, LIB.  LIB is used
combine assembled "object modules" (i.e., .OBJ files) into libraries.
With such libraries, we could then eliminate the .OBJ files from our
disks.  This had the advantage of uncluttering our directories and
freeing up a lot of disk space.  The library of object modules could
also be used with LINK in place of all the individual .OBJ files.

We discussed "jump tables" and their uses.  A jump table is a word
(or doubleword) array of addresses.  Because the JMP and CALL
instructions are capable of using any addressing mode to specify the
location to jump to (not just immediate mode as we have always done
before), the program can pick out (from the table) a particular address
to jump to, using an indexed addressing mode.  For example, with the
jump-table

TABLE     DW   BACKSPACE
DW   TAB
DW   LINEFEED

the instruction

JMP  TABLE[SI]
BACKSPACE:
TAB:
LINEFEED:

would jump to any of the labels BACKSPACE, TAB, or LINEFEED, depending
on whether SI is 0, 2, or 4.  Similarly, if the entries in the table
are names of procedures rather than names of labels, we could use a

CALL TABLE[SI]

to CALL the selected procedure.
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Finally, we discussed the Program Segment Prefix (PSP).  The PSP
is a 256 (100H) header that is appended to the beginning of every
program we run.  It helps the program interface to DOS.  In particular,
it allows DOS to pass various items of information to the program.  The
most interesting item from our standpoint is that a buffer in the PSP
contains the "parameters" specified when the program name was typed in
at the DOS prompt.  The "parameters" are simply everything on the
command line except the prompt itself and the program name.  Thus, in
the command

A>MASM PROG7,,PROG7;

the "parameters" are contained in the string " PROG7,,PROG7;".  When
MASM executes, it finds this string in a buffer beginning at offset 81H
in the PSP.  A count of the bytes in the parameter string is at offset
80H in the PSP.  The PSP itself is located at ES:0 when the program
begins executing, so the count and the buffer are (respectively) at
ES:80H and ES:81H.

Overview of the 8087 Numeric Coprocessor

The greatest lack in microcomputers in general (these days) is the
lack of a built-in floating-point arithmetic instruction set.  We have
seen so far how it is possible to use the 8088 to perform reasonably
flexible integer arithmetic arithmetic on words or on bytes.
Unfortunately, these data types do not by any stretch of the
imagination begin to cover the data types used in business or industry.
For these applications (and for technical applications) we also need
integer arithmetic of much higher precision, and floating point
arithmetic.  Word arithmetic deals with numbers in the range 0 to 65535
(or -32768 to 32767), and this is clearly inadequate (for instance) if
we are writing software to compute the earnings of a ten-million dollar
corporation.

Higher precision arithmetic can, of course, be provided by the
software.  You have seen in chapter 4 how to perform doubleword
arithmetic (including multiplication and square roots), which has twice
the precision of ordinary word-arithmetic.  Doublewords express values
in the range of approximately -2 billion to +2 billion.  Still, this
wouldn't be sufficient for the finances of companies like IBM, AT&T, or
the U.S. government, and still less so for the staggeringly large
quantities found in science.  Even worse, software arithmetic is
tremendously slow in comparison to arithmetic performed by hardware.  A
word-multiply by the 8088 hardware (using the built-in MUL instruction)
takes  less than 30 microseconds, whereas the software doubleword
multiply procedure given on p. 153 in the book takes about 200
microseconds.  For higher precision than this, or for floating point
arithmetic, the situation becomes much worse still.  The manufacturer's
literature (from Intel) for the 8087 chip (which we will discuss
shortly) makes the following estimates of the time involved in single
precision floating point arithmetic when:  a) the 8087 chip is used
(i.e., the arithmetic is done in hardware); and b) 8086 software is
used.  (The 8086 being a somewhat faster version of the 8088.)  All
times are in microseconds:
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INSTRUCTION                               8087        8086
Multiplication                             19         1600
Addition                                   17         1600
Division                                   39         3200
Comparison                                  9         1300
Load                                        9         1700
Store                                      18         1200
Square Root                                36        19600
Tangent                                    90        13000
Exponentiation                            100        17100

While this table reflects a lot of optimism in the 8087 column and a
lot of poor software in the 8086 column, it does get across a true
point:  Namely that if speed is crucial, then the 8088 microprocessor
cannot be regarded (in comparison to devices performing arithmetic in
hardware) as an effective tool for performing high-precision arithmetic
-- the software is simply too slow.  Even the simplest software
floating point operations require over a millisecond (1/1000 second) to
perform.

Although you have read Chapter 4, which covers software for
multiple-precision arithmetic, we will not cover this material in
class, nor do any problems reflecting the material.  The reason for
this is not merely that such software is bad -- it is that it is no
longer cost-effective for programmers to write arithmetic software for
8088-based computers.  Today, it is possible (and cost-effective) for
all arithmetic to be done in the computer hardware.  This situation has
come about because of a chip manufactured by Intel -- the 8087 numeric
coprocessor extension chip.  The 8087 can perform fast, accurate
arithmetic on many data types, is easy to program, can be plugged into
an IBM PC in about 5 minutes, and costs less than $100 (retail).  Also,
it is almost the sole advantage (aside from larger memory) of the IBM
PC over earlier microcomputers.  To go further, it is the sole
advantage of the IBM PC over 16-bit microcomputers based on other CPUs
than the 8086 or 8088.  We will discuss the 8087 in much more detail in
the remainder of the lecture, but the table of execution times we saw
earlier gives some indication of the chip's abilities.  As Richard
Starz, the author of the standard book on the 8087 puts it, the 8087
"turns hours into minutes", and he is not far off in this assessment.
(It is interesting to note that the 8087 can actually perform a double-
precision floating point multiplication faster than the 8088 can
perform a word-integer multiplication in hardware).

As indicated, the 8087 is capable of performing all of the
standard arithmetic functions (+, -, *, /) as well as many
"transcendental" functions like the square root, logarithm,
exponential, and some trigonometric functions.  It also utilizes many
new data types.  Here is a list of 8087 data types (the numbers in the
"range" column being only approximate):
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DATA TYPE             BITS        DIGITS           RANGE
Word Integer           16           4        -32768 to 32767
"Short" Integer        32           9     -2 billion to +2 billion
"Long" Integer         64          18          -9E18 to 9E18
Short Real             32           6          1E-37 to 1E38
Long Real              64          15         1E-307 to 1E308
Temporary Real         80          19        1E-4932 to 1E4932
Packed Decimal         80          18   18 decimal digits and a sign

Only the word data-type is present on the 8088, so the addition of
these types is a tremendous extension.  In point of fact, the 8087
(which does nothing more than arithmetic) is a much more complex device
than the "general purpose" 8088 microprocessor that it extends.

Unfortunately, (as I understand it) very few of the computers in
the micro lab are equipped with an 8087, so we cannot have any assigned
work using it.  However, it would be fun for a few of you to have a
final project involving the 8087.  In the 8087 discussions that follow
we will assume that an 8087 has been added to the computer, even though
this does not reflect the general situation in the micro labs.

Programmer's Model of the 8087

As far as the IBM PC is concerned, the 8087 is not a device --
i.e., it is not addressed through I/O ports as are various hardware
devices we will study later.  Rather, it is an extension of the CPU.
When an 8087 is added to the system, it seems to the programmer as if
the 8088 had simply been upgraded to include many new registers, new
instructions, and new data types.  Early versions (say 1.0) of the
Macro Assembler did not support these new instructions or data types.
Fortunately, MASM version 3.x supports all 8087 instructions and data
types; DEBUG also supports the 8087 to a certain extent.

Let us first discuss how the assembler deals with all of these new
data types.  After that, we will discuss some of the new instructions.

First, a trivial case.  As you might expect, a variable of the
WORD-INTEGER type is simply defined with DW statement, as always.  The
8087 word data type is compatible with the 8088 word data type and need
not be discussed further.

On the other hand, SHORT-INTEGER and SHORT-REAL (single precision)
variables, which are both four bytes long, are defined using the DD
("define doubleword") statement.  You may recall that DD is also used
to define variables whose values are segment:offset pairs of words.  In
fact, DD is rather flexible and is able to set up all three of these
distinct (though all 4-byte) data types.  It does this by examining the
value and seeing what type it must be.  For example, consider the
following uses of the DD statement:

AGAIN:
...

FOO       DD        100.0     ; DEFINE A SHORT REAL.
BAR       DD        100       ; DEFINE A SHORT INTEGER.
REAL      DD        AGAIN     ; DEFINE A SEGMENT:OFFSET.
FAT       DD        3.1E17    ; DEFINE A SHORT REAL.
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The DD operator is able to deduce that the first and last assignments
are real since they contain decimal points.  BAR must be an integer
since it is a number with no decimal point.  REAL must be a
segment:offset since its value is a label, which can only represent an
address.  In this case, the word at REAL will contain the offset of
AGAIN, while the word at REAL+2 will contain the segment.  Notice that
the bytes making up the variables FOO and BAR are totally different,
even though the value represented is the same.

The LONG-INTEGER and LONG-REAL (double precision) data types each
occupy 8 bytes and are defined by the DQ ("define quadword") operator.
We have not mentioned DQ previously, but it is very similar to the DD
and DW operators.  Here are some obvious examples:

FOO       DQ        100.0     ; DEFINE A LONG REAL.
BAR       DQ        100       ; DEFINE A LONG INTEGER.

Finally, the TEMPORARY-REAL and PACKED-DECIMAL (or BCD) types are
defined with the DT ("define tenbyte") operator.  The TEMPORARY-REAL is
just a floating point form with slightly extended precision and a
vastly extended range of exponents.  The PACKED-DECIMAL type is
reminiscent of the integer types (it consists of 18 decimal digits plus
a sign), but it has a different memory representation.  The PACKED-
DECIMAL type consists of ten bytes; one byte is the "sign" byte (it is
either zero or 80H), and all of the other bytes represent two BCD
digits each.  In any case, here are some examples of how to use the DT
operator:

FOO       DT        100.0     ; DEFINE A TEMPORARY REAL.
BAR       DT        100       ; DEFINE A PACKED DECIMAL.

None of these data types is understood by the 8088 alone.
However, as mentioned, adding an 8087 to the system also adds many
instructions to the instruction set.  These new instructions are able
to deal with the new data types.  We will discuss some of these new
instructions in the next section.

Before we can understand any new instructions, however, we have to
understand the 8087 register set -- i.e., the new registers added to
the CPU by adding an 8087 to the system.  All of the new instructions
use the new registers (none of them use the old 8088 registers), and
many of them also use memory variables of the new data types.

The 8087 has 8 80-bit registers.  These huge (by 8088 standards)
registers are each capable of holding a number in the largest (in terms
of bytes) and most precise data type -- the TEMPORARY-REAL type.  Note
that any data type can be converted to TEMPORARY-REAL without loss of
precision.  The 8087 takes advantage of this fact to internally store
all numbers in TEMPORARY-REAL form.  Thus, internally, all 8087
operations deal only with the TEMPORARY-REAL form, and there is no need
for the explicit type-conversion operations so common in higher level
languages.  All type-conversions to and from TEMPORARY-REAL and the
other data types occur when data is loaded into the 8087 registers from
memory, or stored into memory from the 8087 registers.

The 8087 registers form a stack, much like the 8088's stack (but
with TEMPORARY REAL values rather than word values).  The registers are



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 252/361

CLASS 14

designated as ST(0) [or just ST], ST(1), ST(2), ..., ST(7).  ST(0) is
the register at the top of the stack, while ST(7) is the register at
the bottom of the stack.  If new data is loaded into the 8087, the new
data is put at the top of the stack and becomes register ST(0).  The
old ST(0) register becomes ST(1), the old ST(1) becomes ST(2), etc.
Finally, the old value in ST(7) just disappears.  Actually, the
register which was previously addressed as ST(7) is now addressed as
ST(0) and the new data simply overwrites the old ST(7) data.  This way
of working should be very familiar to anyone used to the FORTH
programming language, or to Hewlett-Packard calculators.

Some Simple 8087 Instructions:  Loading and Storing

NOTE:  in what follows we will discuss how various instructions are
used, but we will not in general discuss the timing of these
instructions.  This is meant to complement the information in the book.
On pp. 280-282 of the text is a table which gives the timing of every
instruction, but unfortunately neglects telling how to use a single one
of them!

In this section, we discuss the 8087 instructions FLD, FILD, FBLD,
FSTP, FISTP, and FBSTP.  The first three instructions are analogous to
8088 PUSH instructions, except that data is pushed onto the 8087
register stack rather than the 8088 stack.  Similarly, the latter three
instructions are similar to the 8088 POP instructions, in that they pop
data from the 8087 register stack.

The command for loading new (REAL, not INTEGER or PACKED) data
into the 8087 is the FLD command.  All 8087 commands begin with "F"
(probably to indicate "Floating point").  The general syntax of FLD is

FLD  source

where the source operand is any 8088 addressing mode except register or
immediate.  Suppose we had the following data and program:

FOO1      DD        100.0          ; SINGLE PRECISION 100.
FOO1.5    DD        ?              ; AN UNUSED DOUBLEWORD.
FOO2      DQ        100.0          ; DOUBLE PRECISION 100.
FOO3      DT        100.0          ; TEMPORARY REAL 100.

.

.

.
FLD       foo          ; 8087 LOAD INSTRUCTION.

where foo represents any of FOO1, FOO2, FOO3.  The FLD instruction
would read either FOO1, FOO2, or FOO3 from memory and push the value
onto the 8087's stack of registers.  In this case, each of the FOOs has
the value 100, so this instruction would result in ST(0) being 100 and
in all of the other ST(i) being pushed downward on the stack.  As
mentioned earlier, all data is internally stored in the 8087 in
TEMPORARY REAL format, so the results of "FLD FOO1", "FLD FOO2", and
"FLD FOO3" are identical.  FLD automatically performs the type
conversion from SHORT REAL or LONG REAL to TEMPORARY REAL as the data
is loaded.
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Similarly, the 8087 register stack can be popped (with the result
being stored in memory) by the FSTP instruction.  The general syntax is

FSTP destination

where, again, the destination can be any 8088 addressing mode except
register.  For instance, having already used the FLD instruction to
make ST(0) equal to 100, we could then store the 100 at FOO1.5 by
saying

FSTP FOO1.5

On the other hand, we could also use one of the other addressing modes.
For example, we could assign SI to be 4 (recall that a SHORT REAL
variable is 4 bytes long) and perform a

FSTP FOO1[SI]

Either of these instructions would result in the value 100 being popped
from the 8087 register stack (and converted to SHORT REAL format), with
all of the other ST(i) moving upward.  Indeed, the register stack would
be identical to the way it was before the original FLD instruction,
except that the orginal value of ST(7) (i.e., the "bottom" of the
stack) would have been destroyed by the FLD.

Another way of looking at these operations is by drawing a picture
of the stack after the operations are performed.  If we designate
quantities with definite (but unknown) values with x0, x1, etc., then
the stack behaves like this:

Instruction         ST(0)     ST(1)     ST(2)     ...     ST(7)

(initial condition)   x0        x1        x2                 x7
FLD  foo             100        x0        x1                 x6
FSTP FOO1.5           x0        x1        x2                  ?

The final question mark in the table indicates that the value is not
the original x7, which has been destroyed.  Of course, the effect of
these instructions on the memory variables has not been shown, but all
are unchanged except that FOO1.5 is overwritten with 100 in the final
step.

The FLD and FSTP instructions load and store only REAL values.
INTEGER and PACKED (or BCD) values have their own load and store
operations.  The INTEGER load operation is FILD.  It can be used to
push any INTEGER data type onto the register stack:

FOO1      DW   100       ; WORD INTEGER 100.
FOO1.5    DW   ?         ; UNKNOWN WORD INTEGER.
FOO2      DD   100       ; SHORT INTEGER 100.
FOO3      DQ   100       ; LONG INTEGER 100.

.

.

.
FILD foo       ; PUSH ANY FOOn ONTO REGISTER STACK.
FISTP FOO1.5   ; STORE TOP OF STACK (100) INTO FOO1.5.
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There is no need to discuss this further, since there is almost no
difference from the FLD and FSTP instructions described earlier.  As
always, the 100 pushed onto the stack by FILD is in the TEMPORARY REAL
format, so the 8087 must convert the data type for both of these
instructions.

The BCD (PACKED) data type is pushed and popped with the FBLD and
FBSTP instructions:

FOO1      DT   100       ; PACKED 100.
FOO2      DT   ?         ; UNKNOWN VALUE.

.

.

.
FBLD FOO1      ; PUSH 100 ONTO THE REGISTER STACK.
MOV  SI,10
FBSTP FOO1[SI] ; POP AND STORE AT FOO2.

Here I have used an indexed addressing mode just to emphasize again
that any addressing mode can be used other than 8088 register mode or
immediate mode.

Even though we have not yet learned how to use the 8087 to perform
any arithmetic, these load and store instructions are by themselves
useful, by virtue of the fact that they automatically convert from one
data type to another.  In general, with the 8088 we perform most of our
arithmetic in binary (word) form, and converting back and forth from
the decimal representation is rather inconvenient and slow,
particularly for doubleword or higher precision integers.  By providing
a PACKED (BINARY CODED DECIMAL) form which is much closer to the normal
decimal representation, the 8087 does most of our conversion work for
us (and more quickly, too).  In a binary coded decimal (BCD)
representation, each byte of the number represents two decimal digits.
Each decimal digit (0-9) occupies one nibble of the byte.  For example,
the BCD representation of 45 (decimal) is 45H.  The BCD representation
of 100 (decimal) is 0100H.  The BCD representation of 65536 (decimal)
is 065536H.

Clearly, converting a BCD number to decimal (ASCII) is very
simple:  We simply separate off the nibbles of each byte, and convert
each nibble to a decimal digit by adding '0'.  In the case of the 8087,
the PACKED (or BCD) data type consists of ten bytes.  The first nine
bytes are BCD bytes in increasing order of significance.  The last byte
is the "sign" byte.  It is zero for a positive number and 80H for a
negative number.  Thus, in memory, the number -123456789 would be
represented in PACKED DECIMAL form as the bytes

89H, 67H, 45H, 23H, 01H, 00H, 00H, 00H, 00H, 80H

Of course, several niceties suggest themselves if we actually wanted to
display the number: we would want to strip off any leading zeros, but
we would always want to print one '0' if the result actually is zero.
For instance (for the number being discussed), we would want to display
"-123456789" rather than "-000000000123456789".

In any case, the first step of the display procedure would have to
be to convert the number to be displayed into BCD form.  This is made
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trivial by the 8087's automatic type-conversion feature.  For instance,
to convert the WORD INTEGER FOO to the PACKED DECIMAL BAR, we would
simply use the instructions

FILD      FOO            ; CONVERT TO TEMPORARY REAL.
FBSTP     BAR            ; CONVERT TO PACKED DECIMAL.

Here is a simple 8088 procedure to complete the display process and
show the number on the screen, assuming that the argument passed on the
stack is the address of the buffer containing the BCD representation of
the number:

; PUTDEC is assumed to be a macro which converts its argument (a
; number from 0 to 9) to a character from '0' to '9' and displays it.
; With no argument, it uses AL.
begin disp_packed,2
irp x,<i,flag,,,bcd>

var x
endm
digit equ byte ptr [si]         ; used to access the bytes.

fwait                           ; wait for the 8087 to finish.
mov flag,0                      ; while 0, there could be leading 0s.
mov si,bcd                      ; get address of the bcd number.
add si,9                        ; point si at last byte of number.
mif

test digit,80H               ; minus sign?
mthen nz

putchr '-'                   ; if so, display it.
melse
mendif
mov i,10
repeat                          ; first, need to get rid of all

dec si                       ; leading zeros.  We begin by
mif                          ; counting down from the most

cmp i,1                   ; significant byte until we find
mthen be                     ; a byte which is non-zero.  (This

putchr '0'                ; byte could still have an upper
exit                      ; nibble of zero, but it's a start

melse                        ; anyhow.)  If we count down all the
dec i                     ; way to the last digit and they're
cmp digit,0               ; all zero, simply display a '0'

mendif                       ; and quit.
until ne
repeat                          ; Now that we've reached a non-zero

mif                          ; byte, split it up into nibbles
mov al,digit              ; and convert to ASCII by adding
mov cl,4                  ; '0'.  Note that if FLAG is still
shr al,cl                 ; zero and the upper nibble is zero

mthen nz                     ; then it's a leading zero and should
putdec                    ; be suppressed.

melse
mif

cmp flag,0
mthen nz

putdec 0
melse
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mendif
mendif
mov flag,1                   ; In any case, set FLAG=1 so no more
mov al,digit                 ; digits are suppressed.
and al,0fh                   ; Do lower nibble now.
putdec
dec si
dec i

until z
return 1

There is nothing particularly novel about this program, except
that it contains a new 8087 instruction FWAIT, which we have not seen
before.  To explain FWAIT we have to understand a little more about how
the 8087 operates.

While installation of the 8087 appears to the programmer (in many
situations) merely to have added some registers to the 8088 and to have
upgraded its instruction set, there are other situations in which it
becomes apparent that the 8087 really is a separate processor from the
8088.  The key point to understand is that many 8087 operations take a
very long time (relative to most 8088 instructions), and it would be
wasteful to simply keep the 8088 idle while this processing occurs.
Instead, the 8088 and 8087 actually execute simultaneously, with each
working on its own assigned task.  The 8087 executes all of the 8087
instructions, and the 8088 executes all of the 8088 instructions.
Let's consider a simple example of this.  In the program

FLD  FOO
MOV  CX,10

AGN: LOOP AGN

the 8087 does not simply passively wait for the 8087 to finish
executing the FLD command.  Instead, it goes ahead and begins executing
the indicated loop.  The FLD instruction requires about 50 clock cycles
to execute (for a SHORT REAL FOO), while the 8088 MOV instruction
indicated takes about 4 clocks and the LOOP takes about 17.  Thus, the
8088 is already on its third iteration of the loop by the time the 8087
finishes executing the FLD.  This being the case, it is important that
the 8087 and 8088 do not simultaneously try to access the same bytes of
memory.  Otherwise, one processor could modify a word before the other
is finished reading it, and chaos could ensue.  (Of course, if both
processors are simply reading the bytes, there is no problem.)  One way
to ensure this synchronization between the processors is to use the
FWAIT instruction.  The FWAIT instruction tells the 8088 to wait until
the 8087 is finished with its current instruction before continuing.
In the program we have been discussing, in which a PACKED DECIMAL
number is converted to ASCII and displayed, the FWAIT is used for
exactly this.  Assuming that the PACKED DECIMAL number was created by
an 8087 FBSTP instruction in the first place, the FWAIT instruction
ensures that the FBSTP instruction has terminated before attempting any
conversion.

Taking another simple example, if we wanted to write a new value
into FOO immediately after using FLD to load FOO into the 8087, we
could not simply say something like this:
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FLD  FOO
MOV  WORD PTR FOO,AX

Instead, we would have to ensure that the FLD had finished with FOO
before continuing:

FLD  FOO
FWAIT
MOV  WORD PTR FOO,AX

This synchronization is not a problem if we stick exclusively to
8087 instructions.  For example, we could say

FLD  FOO
FSTP FOO

without fear of problems.  The assembler automatically encodes an FWAIT
in front of every 8087 instruction, so we ourselves to not have to
worry about it.

The fact that the 8088 and 8087 execute simultaneously and
independently is sometimes of profound importance.  Such co-processing
allows the 8088 to perform rather complex processing with no runtime
penalty!  Since the program has to wait for the 8087 anyway, there is
no reason why it can't do some useful processing as well in the
meantime.  We will possibly see some examples of this later.

Although (for simplicity's sake) we did not mention it before, the
FLD and FSTP commands (not the INTEGER or PACKED equivalents) can also
use 8087 registers as sources or destinations of data.  In particular,
"FLD ST(0)" makes a copy of ST(0) and then pushes it onto the stack --
i.e., it duplicates the top of the stack.  For example,

Instruction         ST(0)     ST(1)     ST(2)     ST(3)  ...   ST(7)
(initial condition)  100       200       300       400          800
FLD ST(1)            200       100       200       300          700
FLD ST(0)            200       200       100       200          600
FSTP ST(2)           200       200       200       300           ?

Notice in the last example that the top of the stack (200) was copied
to ST(2) (which was 100 to begin with), and then the top of stack was
popped.  The old ST(1) (which happened to be 200) thus became the top
of stack, ST(2) (which we forced to be 200) became ST(1), and ST(3)
(which happened to be 200) became ST(2).  ST(4) through ST(6) (which
are not shown) are 400, 500, and 600.  The instruction "FSTP ST(0)" can
be used to simply pop the stack and throw away the data, since performs
a meaningless operation [copies ST(0) to itself] and then pops the
stack.

There are two other 8087 "store" operations which I haven't
mentioned yet.  One is the FST instruction.  It is a "store"
instruction alone, and not a "store and pop".  Many 8087 instructions
have two versions, one which pops the stack after completion and one
which doesn't.  The version of the instruction which pops is always
designated by a trailing "P".  Thus, "FST" doesn't pop, "FSTP" does.
FST is much like FSTP, except for the popping, so we can use it to
store several copies of the same data in memory:
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FOO1      DD        ?
FOO2      DQ        ?

FST       foo
FST       foo[SI]

There is one more difference, however, and that is that FSTP does not
work with TEMPORARY REAL values in memory.  (Thus, no FOO with a DT.)
In point of fact, no 8087 instruction (other than those we've
mentioned) can deal with a TEMPORARY REAL value in memory.  Only the
FLD and FSTP instructions can use a TEMPORARY REAL value in memory.
All other REAL 8087 instructions use only the SHORT and LONG REAL
types.  Similarly, there is an FIST instruction, which is like the
FISTP (INTEGER store) instruction, except that it does not pop the
stack and that it uses only WORD INTEGER and SHORT INTEGER data in
memory.  It cannot use LONG INTEGER data in memory.  Only the FILD and
FISTP instructions can use a LONG INTEGER value in memory.  All other
INTEGER 8087 instructions use only WORD INTEGER and SHORT INTEGER
types.  There is no non-popping equivalent of the FBSTP instruction for
PACKED DECIMAL.  Only the FBLD and FBSTP instructions can use PACKED
DECIMAL values in memory.

Let's summarize all of this in an easy to understand form:

DATA TYPE IN MEMORY           INSTRUCTIONS USING IT
WORD INTEGER                  ALL INTEGER INSTRUCTIONS
SHORT INTEGER                 ALL INTEGER INSTRUCTIONS
LONG INTEGER                  ONLY FILD AND FISTP
SHORT REAL                    ALL REAL INSTRUCTIONS
LONG REAL                     ALL REAL INSTRUCTIONS
TEMPORARY REAL                ONLY FLD AND FSTP
PACKED DECIMAL                ONLY FBLD AND FBSTP

Once inside the 8087, however (as mentioned several times before), all
data becomes TEMPORARY REAL.
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SOME IDEAS FOR FINAL PROJECTS
As you know, we are scheduled to begin the final project next

Monday.  Some of you have ideas for projects you would like to do.  I
would like all of you to think about it and to come up with some ideas.
Don't worry if your idea might involve something we haven't discussed
in class.  I will endeavor to get you any information you  need for the
project (or, at least, to help you get such information).  Don't worry
if the project seems too hard or too easy (I will decide whether it's
too hard or too easy).  Remember that you have three weeks to work on
it, so it won't be trivial by any standard.  Cooperative projects are
okay -- i.e., if you have a project which can be modularized for
several of you to work on, it might be an acceptible idea.  Here are
some reasonably fertile areas for projects:

a)   Computer graphics.  Although we have not yet discussed graphics on
the PC, we will begin to do so next week, and so getting
information (for a TI or an IBM) is no problem.

b)   Additional DOS utilities.  We have already developed a "file dump"
program and a Wordstar-to-ASCII conversion utility.  There is a
lot of room for useful utilities.

c)   Additional database-type utilities.  We are in the process of
developing a sorting program.  Additional database utilities like
file encryptors, data compression programs, etc., would be
interesting.

d)   "Infinite precision" arithmetic routines.  An "infinite precision"
arithmetic scheme does not use numbers of fixed sizes -- i.e.,
byte or word.  Rather, the size is adjustable.  Thus, the product
of a word times a byte is 3 bytes.  Or:  the product of a 50-byte
number times a 75-byte number is 125 bytes.

e)   Mathematically oriented programs.  For example, programs to locate
prime numbers rapidly.

f)   Number crunching.  These are projects involving the 8087 numeric
coprocessor, which we will begin discussing in a moment.

g)   "Background" features.  Although we have not discussed interrupts
in class, there are many interesting things to be done with
interrupt-controlled features of the computer (like real-time
clocks), as opposed to programs as such.

h)   "Device drivers".  Again, something we have not discussed in
class, although possibly the most significant feature of MS-DOS.
An installable device driver is a way of introducing new device
names (like CON, PRN, etc.) into the system.  These "devices" have
an almost unlimited range of possible functions, and have the
tremendous advantage that they can be accessed in a uniform way
(via their "filename") from any high-level or low-level language.

If you have no inclination to move out into these territories, I will
have several generic projects available, which I will assign at random.
Remember, a project you select could be much easier than one that I
select for you (particularly if your work has been good).
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8087 REFERENCE SHEET 1

Hardware floating point (8087) vs. software floating point (8086).
Execution time is in microseconds.  (REF:  Intel literature.)
INSTRUCTION                               8087        8086
Multiplication                             19         1600
Addition                                   17         1600
Division                                   39         3200
Comparison                                  9         1300
Load                                        9         1700
Store                                      18         1200
Square Root                                36        19600
Tangent                                    90        13000
Exponentiation                            100        17100

8087 data types.  The 8088 has only byte and word integer.  (Ranges are
only approximate.)
DATA TYPE             BITS        DIGITS           RANGE
Word Integer           16           4        -32768 to 32767
Short Integer          32           9     -2 billion to +2 billion
Long Integer           64          18          -9E18 to 9E18
Short Real             32           6          1E-37 to 1E38
Long Real              64          15         1E-307 to 1E308
Temporary Real         80          19        1E-4932 to 1E4932
Packed Decimal         80          18   18 decimal digits and a sign

Use of 8087 memory variables by 8087 instructions:
DATA TYPE IN MEMORY                INSTRUCTIONS USING IT
WORD INTEGER                       ALL INTEGER INSTRUCTIONS
SHORT INTEGER                      ALL INTEGER INSTRUCTIONS
LONG INTEGER                       ONLY FILD AND FISTP
SHORT REAL                         ALL REAL INSTRUCTIONS
LONG REAL                          ALL REAL INSTRUCTIONS
TEMPORARY REAL                     ONLY FLD AND FSTP
PACKED DECIMAL                     ONLY FBLD AND FBSTP

Load operations:
FILD      variable       ; push INTEGER variable onto stack.
FLD       variable       ; push REAL variable onto stack.
FLD       ST(i)          ; push copy of ST(i) onto stack.
FBLD      variable       ; push PACKED variable onto stack.

Store operations:
FISTP     variable       ; pop INTEGER variable from stack.
FSTP      variable       ; pop REAL variable from stack.
FSTP      ST(i)          ; copy ST to ST(i) and pop stack.
FBSTP     variable       ; pop PACKED variable from stack.

There are also FIST and FST instructions which store but do not pop.
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The four arithmetic operations.  op=ADD, SUB, MUL, or DIV:
Perform an operation:

FIop      variable       ; ST <- ST op INTEGER variable
Fop       variable       ; ST <- ST op REAL variable
Fop       ST,ST(i)       ; ST <- ST op ST(i)
Fop       ST(i),ST       ; ST(i) <- ST(i) op ST
FopP      ST(i),ST       ; ST(i) <- ST(i) op ST and pop ST

If op=SUB or DIV, then there are also FIopR, FopR, and FopRP
instructions, which are the same as those above except that the order
of the operation is reversed.  For example:

FopR      ST,ST(i)       ; ST <- ST(i) op ST
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Comments

0.  Unfortunately, there is a bug in the Pascal sorting algorithms I
have handed out, even though I thought I had throroughly tested them.
The Heapsort algorithm contains several typos.  If you are not using
the Heapsort (as given by the handout), make a notation on your handout
that the algorithm is incorrect.  If you are using it, then come to me
to for the correct version.

0.5.  Even worse, there is a bug in the insertion sort!  I forgot to
tell you that for the insertion sort to work, the zeroeth pointer in
the pointer array (counting the pointer to the first line as the first
pointer) must point to a sentinel line which is smaller than all of the
text lines -- i.e., is of zero length.  The entire problem can be fixed
by putting the following two lines immediately prior to the DW
instruction defining the pointer array:

ZERO DB 0      ; sentinel string of zero length.
DW ZERO   ; pointer to the sentinel.

...(DW definining pointer array)...

1.  "Phase Error Between Passes".  When using the assembler, many of
you have seen the error message "phase error between passes", often
accompanied by a large number of other errors.  Usually, the "phase
error" and most of the other messages constitute just one error, and
not the apparently large number indicated by the assembler.  To
understand this, we have to understand something about the way the
assembler works.  The assembler is a "two pass" assembler.  This means
that the assembler does not simply read your source file, glance at it,
and produce the correct object code.  Rather, it has to process the
source code twice to produce the correct object code.  On the first
pass (i.e., the first time through the code), the assembler computes
various things like the length of each instruction and the location of
each label.  On the second pass through the code, it is then able to
fill in many things that were unknown on the first pass.  For example,
in a program like

JMP  AGAIN
.
.
.

AGAIN:

the location of the label AGAIN is not known to the assembler when the
instruction "JMP AGAIN" is reached on the first pass.  Therefore, on
the second pass, the assembler must supply the proper address for the
JMP.  Now, there are a number of ways to confuse the assembler so that
some numbers calculated during the first pass are not equal to numbers
computed during the second pass.  Such a discrepency is called a "phase
error between passes".  Here is an example of a phase error:
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IF1
MOV AX,5

ENDIF
AGAIN:

Since the instruction "MOV AX,5" is included only on the first pass,
the position of all following labels is different during the second
pass than it is during the first pass.  Thus, when AGAIN is reached, a
"phase error" message appears.  There is no error message at the
IF1/MOV/ENDIF, since the phase error has not yet been detected at that
point, even though it is the IF1/MOV/ENDIF at fault.  Thus, lesson 1
about phase errors is:

1)   The phase error probably does not occur at the point
indicated by the assembler.  (However, it probably occurs
before the next preceding label, or else the phase error
would have been detected earlier.)

There is more, however.  Once a phase error has occurred, the assembler
becomes confused about a number of things, particularly about labels
(since the locations have changed from pass 1 to pass 2).  Therefore,
it begins to generate many other errors at apparently fine
instructions.  Thus, lesson 2 about phase errors is:

2)   If a phase error occurs, don't believe any of the other error
messages until you fix the phase error.  Rather, fix the
phase error and re-assemble.  Most of the other error
messages are probably fictitious.

Review

In the previous class, we began discussing the 8087 numeric
coprocessor extension to the 8088 CPU.  The 8087 is capable of
performing fast hardware-based arithmetic on a number of new datatypes
not present with the 8088 alone.  In many ways, adding an 8087 to the
system is like adding many new registers and instructions to the 8088.

The new datatypes are the SHORT INTEGER, which is 4 bytes long and
defined with the DD operator, the LONG INTEGER, which is 8 bytes long
and defined with the DQ operator, the PACKED DECIMAL, which is a 10
byte BCD form defined by the DT operator, the SHORT REAL (or single-
precision floating point), which is 4 bytes long and defined with DD,
the LONG REAL (or double-precision), which is 8 bytes long and defined
with DQ, and the TEMPORARY REAL, which is 10 bytes long and defined
with DT.  In general, just a few instructions deal with LONG INTEGER,
PACKED DECIMAL, and TEMPORARY REAL data items in memory.  Most REAL
instructions use only SHORT and LONG REALs in memory, while most
INTEGER instructions use only WORD and SHORT INTEGERs in memory.
Internally, however, all data actually stored in the 8087 is in
TEMPORARY REAL format, and all data loaded by the 8087 are converted to
this form.

The 8087 has 8 80-bit (TEMPORARY REAL) registers.  These registers
are arranged in a stack with the top of stack being ST(0) [or just ST],
the next being ST(1), ..., down to ST(7).  Three instructions are used
to push data onto the register stack.  The instruction
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FBLD source

pushes the value of a PACKED DECIMAL memory variable onto the stack.
The instruction

FILD source

pushes the value of a WORD, SHORT, or LONG INTEGER memory variable onto
the stack.  The instruction

FLD source

pushes the value of a SHORT, LONG, or TEMPORARY REAL memory variable or
the value of a (TEMPORARY REAL) register onto the stack.  All necessary
type conversions to TEMPORARY REAL are taken care of by these
instructions.  Similarly, "FBSTP destination", "FISTP destination", and
"FSTP destination" pop the stack, convert the number to the proper
type, and store it at the indicated destination.  Only these six
instructions use LONG INTEGER, TEMPORARY REAL, and PACKED DECIMAL
memory variables.  All others use only WORD or SHORT INTEGER, or SHORT
or LONG REAL memory variables, or (TEMPORARY REAL) registers.

We also discussed the instructions FST and FIST, which are like
FSTP and FISTP except that they store the result without popping (and
their data types are restricted as mentioned above).

The final topic discussed in the previous lecture was
"synchronization" of the 8088 and 8087 processors.  Although it often
appears to the programmer as if the two processors simply constitute a
single "souped-up" processor, there are times when it becomes apparent
that the processors are actually running independently and
simultaneously.  This happens when the two processors are
simultaneously trying to read and write the same memory locations.
When this happens, the data in memory can be corrupted and the program
can misbehave.  The cure for this is the FWAIT instruction.  The FWAIT
instruction forces the 8088 to wait until the 8087 has completed
executing its current instruction before continuing.  This instruction
is necessary only under the conditions mentioned; if the processors are
accessing distinct memory locations (or are merely reading the
locations rather than writing to them), no special effort need be made
to maintain synchronization.  This independent processing by the 8087
and 8088 is actually an advantage in many situations since it allows
the 8088 to perform rather complex functions (with no runtime penalty)
while the 8087 is crunching numbers.

The .8087 Pseudo-op and the FINIT instruction

In order to use 8087 instructions in your program, you must use
the pseudo-op ".8087" before using any 8087 instructions.  That is, you
should use the line

.8087

near the beginning of your program.  Another instruction which might be
used near the beginning of your main program (not your procedures!) is
the
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FINIT

instruction.  FINIT initializes the 8087 processor.  Of course, you do
not want to do this more than once, and particularly not during a
calculation.

Less Primitive 8087 instructions: The Four Operations

Of course, the reason we are using the 8087 in the first place is
probably that we'd like to do some arithmetic.  For example, we'd
probably like to do some addition, multiplication, subtraction, and
division.  That is the subject of this section.

Except as specified below there is generally no difference (except
for the results) in using any of the four operations.  That is, the
syntax of the instructions does not vary among the operations.  We will
discuss a generic operation op, which you can imagine to be any of:
ADD, SUB, MUL, or DIV.  Here is a list of the 8087 instructions
pertaining to the four arithmetic operations, leaving out the various
operands of the instructions:

Fop
FopP
FopR           (Only for subtraction and division)
FIop
FIopR          (Only for subtraction and division)

(For example, here is a list of all addition operations:  FADD, FADDP,
and FIADD.)

Fop is the most commonly used operation.  A Fop instruction has
the syntax

Fop       variable   ; Add a REAL variable to ST(0).
Fop       ST,ST(i)   ; Add ST(i) to ST(0).
Fop       ST(i),ST   ; Add the ST(0) to ST(i).

As you might suppose from the discussion earlier, the memory variable
here can only be of the SHORT REAL or LONG REAL types.  For a memory
variable which is WORD INTEGER or SHORT INTEGER, we must use instead
the FIop instruction, which has the syntax

FIop      variable   ; Add an INTEGER variable to ST(0).

The other operand combinations we saw with Fop would make no sense for
FIop since the operands would have to be 8087 registers (which always
contain TEMPORARY REAL values and not integers).  Except for TEMPORARY
REALs in registers, the TEMPORARY REAL, PACKED DECIMAL, and LONG
INTEGER data types cannot be used with any Fop-type instruction.

The use of these instructions is very straightforward, and
surprises seldom crop up.  For example, here is a simple program to
calculate VAR0=VAR1*VAR2+VAR3, where VAR1 is LONG REAL, VAR2 is SHORT
INTEGER, VAR3 is SHORT REAL, and VAR0 is intended to be PACKED DECIMAL:

VAR0      DT        ?    ; SPACE FOR RESULT.
VAR1      DQ        7.0  ; MAKE VAR1 A LONG REAL 7.
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VAR2      DD        12   ; MAKE VAR2 A SHORT INTEGER 12.
VAR3      DD        22.0 ; MAKE VAR3 A SHORT REAL 22.0.

...
FLD       VAR1      ; PUSH VAR1 ONTO STACK.
FIMUL     VAR2      ; MULTIPLY BY VAR2.
FADD      VAR3      ; ADD VAR3.
FBSTP     VAR0      ; STORE AS VAR0 AND POP.

Here we have used two of the load and store operations seen earlier, as
well as an Fop (with op=ADD) and an FIop (with op=MUL).  Other than the
novelty of the new instructions, there is nothing here to startle the
mind.

The instruction FopP is similar to Fop and FIop, except that the
stack is popped after the operation is performed.  Obviously, this
doesn't make any sense if the destination of the result was the stack
top ST(0) (or just ST, for short).  Therefore, the only operand
combination allowed is reflected by the following syntax:

FopP      ST(i),ST

The FopP form is very useful when the calculation is finished (or, at
least, some step is finished), and intermediate results need to be
disposed of.  Consider, for example, a program to square a number on
top of the register stack:

FMUL      ST,ST(0)

Here there are no intermediate results to dispose of.  Suppose,
however, that we wanted to compute the cube.  We would have to do
something like

FLD       ST(0)          ; DUPLICATE TOP OF STACK.
FMUL      ST(1),ST       ; MULTIPLY SECOND ON STACK BY TOP.
FMULP     ST(1),ST       ; DO IT AGAIN, AND DISPOSE OF THE TOP.

If, say, the number 2 is at the top of the stack, the stack would look
like this during the calculation:

INSTRUCTION              ST(0)          ST(1)
(initial condition)        2              ?
FLD ST(0)                  2              2
FMUL ST(1),ST              2              4
FMULP ST(1),ST             8              ?

The process of taking the cube forced us to make an extra copy of the
initial value, and this extra copy had to be disposed of in the end.
Without a "popping" form of FMULP this could have been quite difficult.

You might wonder why the extra copy of the initial value was not
simply stored in a memory variable.  The answer to this is that because
of the type conversions performed by the 8087 whenever a value is
loaded from memory or stored to memory, the loading and storing process
is rather slow.  As an example of this, it takes about 90 clock cycles
to add or multiply two 8087 registers, but it takes 50 clock cycles to
load a register from memory to begin with, or 90 cycles to save the
value in memory from the register.  That is, it can take longer to load
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the 8087 registers for an operation and to store the result than to do
the operation itself!  From this fact you can easily imagine that there
is a great emphasis placed on arranging your calculations in such a way
that as few 8087 memory accesses as possible are needed.  Indeed, many
high-level languages which use the 8087 are needlessly slow because
they are unable to deal with this fact.  Compilers generally feel that
the place for variables is in memory, so they are continually storing
and reloading intermediate results rather than just keeping them in
8087 registers.  (Many compilers have other problems that make number
crunching inefficient.  Some compilers, for example, rather than simply
using 8087 instructions "inline", will call procedures which in turn
use the 8087 instructions.  In this case, the execution time overhead
of the calling sequence for these procedures can be as large as the
time to execute the 8087 function!)  An assembly-language programmer
can usually beat even the fastest compiler, increasing execution speed
by a factor (say) of three, if many 8087 operations are involved.   To
sum all this up in a few words:

AS MUCH AS POSSIBLE, KEEP ALL INTERMEDIATE RESULTS IN
8087 REGISTERS, RATHER THAN IN MEMORY.

The final elementary arithmetic operations,

FopR      variable
FIopR     variable

exist only for op=SUB and op=DIV.  These instructions are just like Fop
and FIop except that they perform the operation in reverse order.  For
example, the instruction "FSUB FOO" would subtract the variable FOO
from ST(0) and store the result at ST(0).  On the other hand "FSUBR
FOO" would subtract ST(0) from FOO and store the result at ST(0).

The instructions will probably be easier to understand in the
context of a program.  Let us consider the problem of evaluating a
polynomial u(z) of degree N.  A polynomial function, of course, is a
function of the form

u(z) = u0 + u1 z + ... + uN z
N     .

We will assume that z is a single precision real, and that the
coefficients uk are contained in an array u of single precision reals,
with u0 coming first and uN coming last.  [Note, by the way, that
choosing to work in single precision is merely a matter of convenience.
Since all calculations are performed in TEMPORARY REAL format, there is
essentially no penalty in terms of running time for using double
precision or TEMPORARY REAL types for these quantities.  Of course, it
takes more memory to store higher precision variables than to store
lower precision ones.]  For example, to evaluate

r = u(z) = 5 + 4 z + 3 z2 + 2 z3 + z4

at z=10.0 we might have the data

N    EQU  4                        ; DEGREE OF POLYNOMIAL IS 5.
U    DD   5.0, 4.0, 3.0, 2.0, 1.0  ; COEFFICIENTS OF THE POLYNOMIAL.
Z    DD   10.0                     ; VALUE OF THE VARIABLE.
R    DD   ?                        ; THE ANSWER.
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A reasonably efficient way of evaluating such polynomials is with
Horner's rule

r = u(z) = 5 + z*(4 + z*(3 + z*(2 + z*(1))))

which is especially well suited for us (with the 8087) since it allows
us to keep both the intermediate results of the calculation and the
value of z in 8087 registers.  Here is a simple 8087 program for
computing the value of the polynomial using Horner's rule:

; INITIALIZE TO USE HORNER'S RULE.
FLD  Z              ; GET Z INTO THE 8087.
MOV  SI,4*N         ; USE SI TO INDEX THE COEFFICIENT ARRAY, AND

; START WITH U[N].
FLD  U[SI]          ; GET U[N].
MOV  CX,N           ; LOOP N TIMES.

; EACH TIME TROUGH THE LOOP, MULTIPLY BY Z AND ADD COEFFICIENT.
; THROUGHOUT THE LOOP, ST(1) IS Z AND ST(0) IS THE RUNNING TOTAL.
AGAIN:

FMUL ST,ST(1)       ; MULTIPLY RUNNING TOTAL BY Z.
SUB  SI,4           ; MOVE TO NEXT COEFFICIENT.
FADD U[SI]          ; ADD THE COEFFICIENT TO THE RUNNING SUM.
LOOP AGAIN

; SAVE THE RESULT:
FSTP R              ; SAVE AND POP.
FSTP ST(0)          ; ALSO, POP Z FROM THE 8087.

This program, while not the absolute best program that could be
written, is efficient for the 8087.  This means that it has the
following two properties:

1)   Transfer of data between the 8087 and memory is kept to a
minimum.  [In this particular example, each data item is
loaded into the 8087 just once, and the only thing stored to
memory is the final result.]

2)   Since the 8088 instructions can execute simultaneously with
the preceding 8087 instruction, they should be interspersed
with 8087 instructions in such a way that they require the
minimum execution time.  [In our example, the 8088
instructions take zero execution time.]

The program also has the nice property that the final instructions are
arranged in such a way that no FWAIT is needed to ensure that the
result is actually in memory before any successive 8088 instructions
try to use it.

[Any of you who are fond of a particular high-level language might
be interested in benchmarking this program against a high-level
equivalent.  The average execution time of our assembler program is

216 + 211*N   clock cycles

for comparison.  Thus, for a tenth degree polynomial, our routine would
take about 2326 cycles, or roughly 500 microseconds.]
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To take a slightly more intricate example, let us consider the
case in which the variable z is complex, but in which the u's are still
real.  Recall that a complex number is a number of the form

a + b i

where a and b are real, but where i is the square-root of -1.  In
normal arithmetic, -1 has no square root, so the number i is sometimes
called an "imaginary" number.  For our problem, we will represent Z by
X+iY.  Arithmetic with complex numbers obeys the following rules:

(a + b i) + (c + d i) =   (a + c)   +   (b + d) i
(a + b i) * (c + d i) = (a*c - b*d) + (a*d + b*c) i

Thus, a complex addition corresponds to two real additions, and a
complex multiplication corresponds to 4 real multiplications and two
real additions.  One high-level language, FORTRAN, has a built-in
COMPLEX data type, which both explains and is explained by FORTRAN's
overwhelming use in some technical fields (such as physics, my own
field).  In most other languages, we have to "fake" complex operations
by means of real operations.  For example, we might define a complex
number to be an array of 2 reals, and we might write procedures to
perform various operations of complex arithmetic (like the + and *
operations mentioned above).

In FORTRAN, we would do little more to convert a polynomial-
evaluation procedure to allow complex arguments than to change the data
types of U, Z, and R from REAL to COMPLEX.  In other languages, we
would probably "fake it" by replacing the multiplication step and
addition step with the kind of expressions given above.  Thus, the
entire polynomial evaluation would take N complex additions and N
complex multiplications, which corresponds to 4N real multiplications
and 4N real additions.  So long as we are going out of our way to
program the problem in assembler, however, we might as well spend a
little extra effort to find out if this is really the best algorithm
for the job.

In vol. 2 of Knuth, Seminumerical Algorithms, section 4.6.4, a
somewhat better algorithm is given.  In pseudo-code, this algorithm can
be expressed as follows:

T := 2X
S := X2 + Y2

A := UN
B := UN-1
FOR I := 2 TO N DO
BEGIN

C := B + T * A
B := UN-I - S * A
A := C

END
REAL PART OF R := X * A + B
IMAGINARY PART OF R := Y * A

Once again, this algorithm is pretty good for the 8087 since we can
keep X, Y, T, S, A, B, and C in the 8087 registers.  However, the
programming is somewhat trickier than in the previous example since the
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addresses of these various quantities on the stack aren't the same all
the time.  Here is an 8087 program embodying this algorithm:

; Note that a complex number is stored as two real numbers in
; consecutive locations.
N    EQU  4                        ; POLYNOMIAL OF DEGREE 4.
U    DD   5.0, 4.0, 3.0, 2.0, 1.0  ; THE COEFFICIENTS.
Z    DD   10.0, 1.0                ; LET Z=10+i.
R    DD   ?, ?                     ; THE (COMPLEX) RESULT.

;   ST0   ST1   ST2   ST3   ST4   ST5   ST6   ST7
FLD   Z          ;    X
FLD   ST(0)      ;    X     X
FADD  ST,ST(1)   ;    T     X
FLD   Z+4        ;    Y     T     X
FLD   ST(0)      ;    Y     Y     T     X
FMUL  ST,ST(1)   ;   Y*Y    Y     T     X
FLD   ST(3)      ;    X    Y*Y    Y     T     X
FMUL  ST,ST(4)   ;   X*X   Y*Y    Y     T     X
FADDP ST(1),ST   ;    S     Y     T     X
MOV   SI,4*N
FLD   U[SI-4]    ;    B     S     Y     T     X
FLD   U[SI]      ;    A     B     S     Y     T     X
SUB   SI,8
MOV   CX,N-1

AGAIN:
FLD   ST(4)      ;    T     A     B     S     Y     T     X
FMUL  ST,ST(1)   ;   A*T    A     B     S     Y     T     X
FADDP ST(2),ST   ;    A   B+A*T   S     Y     T     X
FMUL  ST,ST(2)   ;   A*S  B+A*T   S     Y     T     X
FSUBR U[SI]      ; NEW_B  NEW_A   S     Y     T     X
SUB   SI,4
FXCH  ST(1)      ; NEW_A  NEW_B   S     Y     T     X

LOOP AGAIN
FMUL  ST(5),ST   ;    A     B     S     Y     T    A*X
FMULP ST(3),ST   ;    B     S    A*Y    T    A*X
FADDP ST(4),ST   ;    S    A*Y    T   B+A*X
FSTP  ST(0)      ;   A*Y    T   B+A*X
FSTP  R+4        ;    T   B+A*X
FSTP  ST(0)      ;  B+A*X
FSTP  R          ;  empty stack

As usual, this code is reasonably straightforward, at least in the
sense of embodying the algorithm.  We do see, however, one new 8087
instruction -- namely

FXCH ST(k)

which exchanges ST(0) and ST(k).  We also see that an 8087 program can
be greatly clarified by appending as comments a "snapshot" of the stack
at every step.

[On the average, this code executes in a time

1219 + 512*(N-1)  clock cycles.
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In an actual test of this code against Microsoft FORTRAN (which used a
complexification of Horner's rule rather than this algorithm), I found
that the FORTRAN code for computing a 19-th degree polynomial (10000
iterations) executed in 191.1 seconds (with a .EXE file 31562 bytes
long), while the assembly version took 26.7 seconds (with a 1338 byte
.EXE file).  The assembly version was therefore 8 times as fast.
However, if (in fairness) we take into account the fact that our
algorithm used only half as many floating point operations, we must
conclude that the assembly version was really only 4 times as fast as
FORTRAN.  It is interesting to note that the average execution time of
our assembly code above in computing a 19-th degree polynomial is 2.3
milliseconds -- not that much different than the time required for
software to compute one floating-point addition or multiplication. ]

The 8087 Status Word

With the 8088, it is often possible for instructions to generate
various error conditions (or other types of conditions), on the basis
of which the program must take some kind of action.  To handle this we
have various "flags" in the CPU's "flag register", namely ZF, SF, CF,
PF, OF, and HF.  Conditional jump instructions can test the values of
these flags.

With the 8087, the situation is less convenient.  Since the 8087
cannot access the 8088 registers directly, there is no direct
reflection (in the 8088 flag register) of conditions in the 8087.
Instead, we must perform some additional operations to handle such
information.  The 8087 has its own "status word" (similar to the 8088's
flag word), but we have to go out of our way to get this word stored
into memory where it can be examined by the 8088.

The 8087 status word contains somewhat more information than the
8088 flag word.  For our purposes, we will limit ourselves to a
consideration of two kinds of information in the status word.  Six of
the bits in the status word describe exceptions which have occurred in
the calculation, and four of the remaining bits describe the kind of
number which the calculation has produced.  Let us first discuss the
exceptions.

An 8087 "exception" is an indication that an error has occurred in
the calculation.  The six possible exceptions are:
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BIT FLAG                     DESCRIPTION

0    IE   invalid operand exception.  This exception can occur in many
ways and usually indicates an invalid operand.  For example,
if an invalid exception would occur in taking the square root
of a negative number.

1    DE   denormalized operand exception.  We will discuss "denormal"
numbers in a moment.

2    ZE   zero-divide exception is caused by a division by zero.

3    OE   overflow exception happens when the result of an operation is
greater than the largest number allowed by the TEMPORARY REAL
format -- i.e., greater than 1.0E+4932 or less than -
1.0E4932.

4    UE   underflow exception happens when the result of an operation
is smaller in magnitude than the smallest non-zero TEMPORARY
REAL number -- i.e., less than 1.0E-4932.

5    PE   precision exception.  Occurs when precision is lost in the
operation.  For example, rounding the number 1.234567E-54 to
an integer is bound to lose all significant figures of the
operand.

These flags represent (respectively) bits 0-5 of the 8087 status word.
When these bits are zero, no exception has occurred.  When they are
one, an exception has occurred.

The exception flags are referred to in the Intel literature as
"sticky bits".  They are "sticky" in the sense that once they are
turned on they remain on.  This is convenient because it means that
rather than continually checking the exception flags after every 8087
operation, we can simply wait until the end of a sequence of
calculations and then check the flags.  In order to check the exception
flags (and the rest of the status word as well), we must use the FSTSW
instruction to save the status word in memory, where it can be examined
by the 8088.  Here is an example showing how to do that (simultaneously
checking for overflow):

status_word dw ?
.
.
.
FSTSW     status_word     ; get the 8087 status word.
FWAIT                     ; wait for it.
TEST      status_word,8   ; mask in just the OE bit.
JNZ       overflow        ; if set, go to overflow handler.
FCLEX

The final instruction in this little program is the 8087 instruction to
"clear" the exception flags.  In general, since the exception bits are
sticky, this is the only way to clear them short of resetting the 8087.
Whether or not the exception flags are explicitly checked by the
program, the 8087 internally performs an error-correction routine to
try and recover from the error condition.  The error-correction



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 273/361

CLASS 15

routines are known as masked responses, and in order to understand them
we have to understand some more about how the 8087 represents numbers.

First, we need to understand about the condition codes.  The
condition codes are the other four bits in the status word that we
mentioned earlier.  The condition codes serve two purposes.  First,
they are set as the result of comparison operations (which we have not
yet discussed), so we must test them to determine (say) if one number
is less than another.  Second, they are used to give the type of number
resulting from an operation.  By "type" I do not mean "data type" in
the sense of being a WORD INTEGER, SHORT INTEGER, ..., TEMPORARY REAL.
Since all 8087 data is internally represented as TEMPORARY REAL, this
would be useless.  Rather, the 8087 has ways of representing several
types of "unusual" numbers.  Here are the special types of numbers
recognized by the 8087 (the numbers at the beginnings of the rows are
explained in a minute):

0    UNNORMAL       See denormal.

1    NAN            Stands for "Not A Number".  A NAN is a bit pattern
which, though of the proper length, does not
represent any valid number.  That is, for the 8087,
not all bit patterns are used as numbers.  NANs are
useful since they can sometimes be used to detect
uninitialized variables.

2    NORMAL         Any valid TEMPORARY REAL number other than 0.

3    INFINITY       The 8087 has a representation for infinity, and can
perform arithmetic on it.

4    ZERO           (Does this need explanation?)

5,7  EMPTY          This refers to a number in an empty register --
i.e., a register which has not been FLDed.

6    DENORMAL       The 8087 does not suddenly underflow when numbers
become too small -- rather, it gradually
underflows.  Normally, representations of floating
point numbers demand "normalization".  That is,
that the leading bit of the number be one.  The
8087, however, allows the leading bits of its
numbers to be zero.  Thus, at the cost of some lost
precision, it can represent numbers smaller than
1.0E-4932.  Such an unnormalized number is called
denormal.  A denormal number is called unnormal
after it has been used in a calculation.

INDEFINITE     Represents a "don't know" answer.  In each data
type, a special value is used to represent an
indefinite answer.  For the TEMPORARY REAL format,
the indefinite number is a special NAN.

With these special types of numbers in hand, we can now understand
how the 8087 processes (i.e., recovers from) exceptions.  While we
cannot go into every possible case here, here is a rule-of-thumb guide
to the typical responses for the indicated exceptions:
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IE   The 8087 returns an indefinite number.

DE   No response.  This is not an error as such.

ZE   Return a properly signed infinity.

OE   Return a properly signed infinity.

UE   Denormalize (unless this results in zero, in which case
return a zero).

PE   No special action.

We can explicitly check the type of number returned by an
operation by examining the condition code bits of the 8087 status word.
Bits 8-10 of the status word are the condition code bits C0-C2, while
bit 14 is condition code bit C3.  C1 represents the sign of the number.
If C1=0, then the number is positive; if =1, then the number is
negative.  C0, C2, C3 together form a 3-bit number which can be
interpreted according to the table of special number types above --
i.e., 0=unnormal, 1=NAN, etc.  Normally, however, prior to checking
these bits we must use the FXAM instruction to ensure that the bits are
set properly.  FXAM "examines" ST(0) to determine its type.

To illustrate these ideas, here is a sample program (from the
Intel literature) which uses the jump-table technique to test the
condition codes and determine the type of the number:

JTABLE DW  UNNORM,NAN,NORM,INFINITY,ZERO,EMPTY,DENORM,EMPTY
STATUS DW ?

FXAM                ; SET CONDITION CODE BITS PROPERLY.
FSTSW STATUS        ; GET THE STATUS WORD.
FWAIT               ; WAIT FOR IT.

; MUST DO A LOT OF SHIFTS TO GET ALL OF THE BITS IN THE PROPER
; POSITION (i.e, TO GET C0, C2, AND C3 INTO BITS 0, 1, AND 2).

MOV AL,BYTE PTR STATUS+1      ; GET HIGH BYTE OF STATUS.
MOV BL,AL           ; SAVE C0
AND BL,1            ; IN BL.
SHR AL,1            ; DIVIDE BY 2 TO GET C1.
MOV BH,AL           ; SAVE C1
AND BH,2            ; IN BH.
SHR AL,1            ; DIVIDE BY 8 TO
SHR AL,1            ; GET C2 INTO
SHR AL,1            ; PROPER POSITION.
AND AL,4            ; MASK OUT EVERYTHING ELSE THAN C2.
OR  AL,BH           ; GET BACK BH.
OR  AL,BL           ; GET BACK BL.

; NOW HAVE 0-7 IN AL.  NEED 0-14 IN SI:
MOV AH,0
MOV SI,AX
ADD SI,AX
JMP JTABLE[SI]

;
UNNORM:
NAN:
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NORMAL:
INFINITY:
ZERO:
EMPTY:
DENORM:

While this does not finish the discussion of the condition code --
in particular, we have not discussed the comparison instructions (FCOM,
FCOMP, FCOMPP, FICOM, FTST), which are analogous to the 8088 CMP
instruction and also set the condition code -- we will not consider the
condition code further at this point.  We will discuss comparison
instructions in a later lecture.

Some Very Simple 8087 Instructions

In the remainder of this lecture, I would simply like to tell you
in capsule form about some additional 8087 instructions that are both
useful and even easier to use than the instructions discussed so far.
None of the instructions to be discussed has any operands:

The FABS instruction is used to take absolute value of the top of
the stack:  ST <-- |ABS(ST)|.

The FCHS instruction multiplies the top of stack by -1:
ST <-- -ST.

The FNOP instruction performs no operation.  It simply kills time.
There is a similar 8088 instruction NOP, which we have not had occasion
to use up to this point.

The FRNDINT instruction rounds the top of stack to an integer.  ST
<-- ROUND(ST).  (This is not to say that the data type of the top of
stack is changed to INTEGER -- the data type of a register is always
TEMPORARY REAL.)

The FSQRT instruction replaces the top of stack by its square
root.  This instruction is noteworthy in that it is probably the
fastest 8087 instruction in relation to the complexity of the function
performed.  Here is a benchmark given by Starz in 8087:  Applications
and Programming for the IBM PC and Other PCs:

TIME (SECONDS) FOR 5000
PROGRAM/MACHINE                        SQUARE ROOTS
8087 routine                               0.35
Apple II+ BASIC (interpreter)            130.0
DEC 2060 BASIC (compiler)                  0.40
VAX 780 FORTRAN (compiler)                 0.20
IBM 3081 BASIC (interpreter)               0.26

Not one of these comparisons is really fair.  For one thing, it is
unfair to compare a language interpreter against a compiler, since
interpreters cannot help being slow.  Also, it is slightly unfair to
compare even a compiled program against an assembler program since, as
we have seen, an assembly language programmer can easily beat the
fastest compiler when it comes to 8087 code.  (On the other hand, the
ease of writing such an 8087 program speaks in favor of such a
comparison).  The most interesting (and fairest) comparison is probably
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to VAX FORTRAN.  As far as square roots are concerned, it seems to
imply that the 8087 is about half of a VAX (and at somewhat less than
half the cost).

Several 8087 instructions are used to FLD (i.e., PUSH) predefined
constants onto the 8087 register stack (below, "e" designates the base
of natural logarithms, 2.7182818...):

FLDLG2         push the logarithm (base 10) of 2 onto the stack.

FLDLN2         push the logarithm (base e) of 2 onto the stack.

FLDL2E         push the logarithm (base 2) of e onto the stack.

FLDL2T         push the logarithm (base 2) of 10 onto the stack.

FLDPI          push pi (3.14159265...) onto the stack.

FLDZ           push zero onto the stack.

FLD1           push one onto the stack.

As a simple example using some of the concepts we have discussed,
let us compute the roots, x, of the quadratic equation

0 = x2 + a x + b

where a and b are real numbers.  The roots of the equation are given by
the formulas

x1 = -(a/2) + [ (a/2)
2 - b ]1/2

x2 =    "   -         "

Normally, special programming techniques are needed to get the required
accuracy out of these formulas in various cases.  We will (for brevity)
ignore this fact and simply compute a straightforward solution -- with
checks of the exceptions, however:
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A    DD   ?         ; DON'T CARE ABOUT THE VALUES OF THE COEFFICIENTS.
B    DD   ?
X1   DD   ?         ; PLACE FOR THE RESULTS.
X2   DD   ?
STATUS DW ?         ; PLACE FOR THE 8087 STATUS WORD.

FCLEX          ; GET RID OF ANY PREVIOUS EXCEPTION FLAGS.
;    ST0       ST1       ST2       ST3       ST4

FLD  A         ;     A
FLD1           ;     1         A
FADD ST,ST(0)  ;     2         A
FDIVP ST(1),ST ;    A/2
FCHS           ;   -A/2
FLD ST(0)      ;   -A/2      -A/2
FMUL ST,ST(1)  ;   (A/2)2    -A/2
FSUB B         ;  (A/2)2-B   -A/2
FSQRT          ;    SQRT     -A/2
FLD ST(0)      ;    SQRT     SQRT      -A/2
FADD ST,ST(2)  ;     X1      SQRT      -A/2
FSTP X1        ;    SQRT     -A/2
FSUBP ST(1),ST ;     X2
FSTP X2        ;
FSTSW STATUS   ; GET STATUS WORD INTO MEMORY.

; THE ERRORS WE HAVE TO LOOK FOR ARE:
;    IE   INVALID -- THIS OCCURS IF ROOTS ARE COMPLEX.
;    OE   OVERFLOW -- THIS OCCURS IF A WAS TOO BIG.
;    PE   PRECISION -- THIS OCCURS IF ROOTS ARE CLOSE TO ZERO OR A/2.
; OF THE OTHER EXCEPTIONS, ZE (ZERODIVIDE) CANNOT OCCUR AND DE
; (DENORMAL) AND UE (UNDERFLOW) ARE NOT OF INTEREST TO US.

FWAIT
TEST STATUS,1  ; IE?
JNZ  INVALID
TEST STATUS,8  ; OE?
JNZ  OVERFLOW
TEST STATUS,32 ; PE?
JNZ  PRECISION

OK:

This concludes the lectures that will be spent exclusively
discussing the 8087.  However, I will continue to talk about the 8087
periodically throughout the remainder of the semester.  You might be
interested to know that of the 107 instructions and variations on "8087
reference sheet 2" (which covers all of the 8087 instructions), we have
so far discussed 70.  9 of the remaining instructions are comparison
instructions and will be discussed in the next lecture.
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8087 NUMERIC COPROCESSOR REFERENCE SHEET 2

TERMS USED
ST(k)     k-th element of 8087 stack         long      LONG INTEGER variable              log       logarithm, base 10
real      SHORT or LONG REAL variable        packed    PACKED DECIMAL variable            ln        logarithm, base e
integer   WORD or SHORT INTEGER variable     {pop}     ST is popped after operation       lg        logarithm, base 2
temp      TEMPORARY REAL variable            {nowait}  use no FWAIT before operation

STATUS WORD BITS
0    IE   invalid             3    OE   overflow            8    C0   condition code      B-D  ST   stack top pointer
1    DE   denormalized        4    UE   underflow           9    C1   condition code      E    C3   condition code
2    ZE   zero-divide         5    PE   precision           A    C2   condition code      F    B    busy

INTERPRETATION OF THE CONDITION CODE BITS
C3, C2, and C0 together make a 3-bit number (with C3 the most significant bit).  Interpretation of the 3-bit code:

After a comparison (FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FTST):
0= ST>source (ST>0 for FTST), 1= ST<source (ST<0 for FTST), 4= ST=source (ST=0 for FTST), 7= don't know.

After FXAM:  0=unnormal, 1=not-a-number(NAN), 2=normal, 3=infinity, 4=zero, 5=empty, 6=denormal, 7=empty.
[C1 is the sign of the number (0=positive, 1=negative).]

The instructions with comments beginning in "-" rather than ";" require special knowledge to be used effectively.  The execution times
listed are in clock cycles.  The times are typical rather than guaranteed.  When memory variables are used, the effective address
calculation time (EA) must also be added.  The times shown are for WORD INTEGER or SHORT REAL variables.  For SHORT INTEGER or LONG
REAL, add about 5 clock cycles.

INSTRUCTION      PURPOSE                      TIME EXCEPTIONS   INSTRUCTION      PURPOSE                      TIME EXCEPTIONS

FABS             ; ST=|ST|                      14 I        |   FLDL2T           ; PUSH lg(10)                  19 I
FADD             ; FADDP ST(1),ST               85 IDOUP    |   FLDPI            ; PUSH pi                      19 I
FADD    ST,ST(k) ; ST=ST+ST(k)                  85 IDOUP    |   FLDZ             ; PUSH zero                    14 I
FADD    ST(k),ST ; ST(k)=ST+ST(k)               85 IDOUP    |   FLD1             ; PUSH one                     18 I
FADD    real     ; ST=ST+real                  105 IDOUP    |   FMUL             ; FMULP ST(1),ST              138 IDOUP
FADDP   ST(k),ST ; ST(k)=ST+ST(k) {pop}         90 IDOUP    |   FMUL    ST,ST(k) ; ST=ST*ST(k)                 138 IDOUP
FBLD    packed   ; PUSH packed                 300 I        |   FMUL    ST(k),ST ; ST(k)=ST(k)*ST              138 IDOUP
FBSTP   packed   ; POP packed                  530 I        |   FMUL    real     ; ST=ST*real                  118 IDOUP
FCHS             ; ST=-ST                       15 I        |   FMULP   ST(k),ST ; ST(k)=ST(k)*ST {pop}        142 IDOUP
FCLEX            ; clear exceptions              5 none     |   FNCLEX           ; {nowait} clear exceptions     5 none
FCOM             ; CMP ST,ST(1)                 45 ID       |   FNDISI           - {nowait} disable interrupts   5 none
FCOM    ST(k)    ; CMP ST,ST(k)                 45 ID       |   FNENI            - {nowait} enable interrupts    5 none
FCOM    real     ; CMP ST,real                  65 ID       |   FNINIT           ; {nowait} initialize 8087      5 none
FCOMP            ; CMP ST,ST(1) {pop}           47 ID       |   FNOP             ; no operation                 13 none
FCOMP   ST(k)    ; CMP ST,ST(k) {pop}           47 ID       |   FNSAVE  94 bytes - {nowait} save all registers 208 none
FCOMP   real     ; CMP ST,real {pop}            68 ID       |   FNSTCW  2 bytes  - {nowait} save control word   15 none
FCOMPP           ; CMP ST,ST(1) {pop} {pop}     50 ID       |   FNSTENV 14 bytes - {nowait} save environment    45 none
FDECSTP          ; move stack down by 1          9 none     |   FNSTSW  2 bytes  ; {nowait} save status word    15 none
FDISI            - disable interrupts            5 none     |   FPATAN           - ST="partial" ARCTAN(ST)     650 UP
FDIV             ; FDIVP ST(1),ST              198 IDZOUP   |   FPREM            - ST=ST MOD ST(1)             125 IDU
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FDIV    ST,ST(k) ; ST=ST/ST(k)                 198 IDZOUP   |   FPTAN            - ST="partial" TAN(ST)        450 IP
FDIV    ST(k),ST ; ST(k)=ST(k)/ST              198 IDZOUP   |   FRNDINT          ; ST=ROUND(ST)                 45 IP
FDIV    real     ; ST=ST/real                  220 IDZOUP   |   FRSTOR  94 bytes - restore all registers       208 none
FDIVP   ST(k),ST ; ST(k)=ST(k)/ST {pop}        202 IDZOUP   |   FSAVE   94 bytes - save all registers          208 none
FDIVR            ; FDIVRP ST(1),ST             199 IDZOUP   |   FSCALE           - ST=ST SHL ST(1)              35 IOU
FDIVR   ST,ST(k) ; ST=ST(k)/ST                 199 IDZOUP   |   FSQRT            ; ST=SQRT(ST)                 183 IDP
FDIVR   ST(k),ST ; ST(k)=ST/ST(k)              199 IDZOUP   |   FST     ST(k)    ; ST(k)=ST                     18 IOUP
FDIVR   real     ; ST=real/ST                  221 IDZOUP   |   FST     real     ; real=ST                      87 IOUP
FDIVRP  ST(k),ST ; ST(k)=ST/ST(k) {pop}        203 IDZOUP   |   FSTCW   2 bytes  - save control word            15 none
FENI             - enable interrupts             5 none     |   FSTENV  14 bytes - save environment             45 none
FFREE   ST(k)    ; tag ST(k) as empty           11 none     |   FSTP    ST(k)    ; ST(k)=ST {pop}               20 IOUP
FIADD   integer  ; ST=ST+integer               120 IDOP     |   FSTP    real     ; real=ST {pop}                89 IOUP
FICOM   integer  ; CMP ST,integer               80 ID       |   FSTP    temp     ; temp=ST {pop}                55 IOUP
FICOMP  integer  ; CMP ST,integer {pop}         82 ID       |   FSTSW   2 bytes  ; save status word             15 none
FIDIV   integer  ; ST=ST/integer               230 IDZOUP   |   FSUB             ; FSUBP ST(1),ST               85 IDOUP
FIDIVR  integer  ; ST=integer/ST               230 IDZOUP   |   FSUB    ST,ST(k) ; ST=ST-ST(k)                  85 IDOUP
FILD    integer  ; PUSH integer                 50 I        |   FSUB    ST(k),ST ; ST(k)=ST(k)-ST               85 IDOUP
FILD    long     ; PUSH long                    64 I        |   FSUB    real     ; ST=ST-real                  105 IDOUP
FIMUL   integer  ; ST=ST*integer               130 IDOP     |   FSUBP   ST(k),ST ; ST(k)=ST(k)-ST {pop}         90 IDOUP
FINCSTP          ; move stack up by 1            9 none     |   FSUBR            ; FSUBRP ST(1),ST              87 IDOUP
FINIT            ; initialize 8087               5 none     |   FSUBR   ST,ST(k) ; ST=ST(k)-ST                  87 IDOUP
FIST    integer  ; integer=ST                   86 IP       |   FSUBR   ST(k),ST ; ST(k)=ST-ST(k)               87 IDOUP
FISTP   integer  ; POP integer                  88 IP       |   FSUBR   real     ; ST=real-ST                  105 IDOUP
FISTP   long     ; POP long                    100 IP       |   FSUBRP  ST(k),ST ; ST(k)=ST-ST(k) {pop}         90 IDOUP
FISUB   integer  ; ST=ST-integer               120 IDOP     |   FTST             ; CMP ST,0                     42 ID
FISUBR  integer  ; ST=integer-ST               120 IDOP     |   FWAIT            ; wait for 8087                >3 none
FLD     ST(k)    ; PUSH ST(k)                   20 ID       |   FXAM             ; report nature of ST          17 none
FLD     real     ; PUSH real                    43 ID       |   FXCH             ; exchange ST and ST(1)        12 I
FLD     temp     ; PUSH temp                    57 ID       |   FXCH    ST(k)    ; exchange ST and ST(k)        12 I
FLDCW   2 bytes  - load control word            10 none     |   FXTRACT          - separate exponent and        50 I
FLDENV  14 bytes - load environment             40 none     |                    - significand of ST
FLDLG2           ; PUSH log(2)                  21 I        |   FYL2X            - ST(1)=ST(1)*lg(ST) {pop}    950 P
FLDLN2           ; PUSH ln(2)                   20 I        |   FYL2XP1          - ST(1)=ST(1)*lg(ST+1) {pop}  850 P
FLDL2E           ; PUSH lg(e)                   18 I        |   F2XM1            - ST=(2 to the ST)-1          500 UP
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FINAL PROJECT #1:  SOME DATABASE FUNCTIONS

This project is, in a sense, a continuation of the mid-term project.  The mid-term project sorted a text file.  This project
allows us to quickly insert, delete, or locate elements in the sorted file.  This project actually consists of writing several short
programs.  Nobody has to write all of the programs.  Anyone doing this project must write at least three of the programs, however.
Here are the required programs:

1.   INDEX.ASM -- index a text file.  (Anybody familiar with DBASE II will have seen a similar function before.)  The INDEX program
takes as input a text file, which may (or may not) have been previously sorted.  This text file is assumed to be larger than
the available memory of the computer.  As output, INDEX sets up a file of pointers to the individual lines of the text file.
This is very similar to the way the sorting program worked, except that it is not necessary to maintain the length of each text
line as a separate count.  (Thus, the given text file is unmodified by this program.)  Since the text file can be longer than
64K, the pointers to the lines must be doublewords rather than words.  The output file thus consists of 4-byte records, each of
which represents a doubleword pointer into the text file.  The only exception will be the first 4-byte record, which will
contain a doubleword count of the number of text-lines.  Suppose that our text file was

This is a sample text file<cr><lf>
which is to be used with the indexing function <cr><lf>
for the final project.<cr><lf>

Since there are three lines of text, the output index file's first record would be a doubleword with the value 3, indicating
that there are three text lines.  This would be followed by three records containing the doublewords 0, 28, and 77, which are
the relative positions of the three lines in the file.  That is, the output index-file would contain the bytes (in hex)

03 00 00 00    00 00 00 00    1C 00 00 00    4D 00 00 00

(Recall that the bytes of an integer number are stored least-significant-byte to most-significant-byte.)  As a convention, we
will suppose that the pointer being negative -- i.e., bit 31 being one -- marks the line as "deleted" from the textfile.  This
convention is used by the programs that follow.  Of course, this fact does not affect the operation of the INDEX program since
by definition all lines in the original text file are "present" and not "deleted".  The index file is useful in dealing with a
large (sorted) file, since it allows us to add or delete records to the file much more quickly than by simply rearranging the
file (at least, if the records average much more than 4 bytes in length).  The syntax of the INDEX program will be

INDEX textfile indexfile

and you should not assume that the entire array of doubleword pointers can fit into memory at once.  Notice that neither the
input nor output files are given by I/O redirection, and the PSP must be explicitly read to determine the names of the files.

2.   DSPLINES.ASM -- display a range of text-lines, using the pointers in an index file.  Here is the syntax of the DSPLINES program:

DSPLINES textfile indexfile [/Ln:m][/D]

Here, neither the index file nor the text file is given by I/O redirection.  (If desired, the output can be redirected to a file
rather than to the console.)  The name of the text file is passed in the PSP, and you must check the parameter buffer for the
name, and explicitly open the file.  The "/Ln:m" gives the range of lines to display.  Thus, if we used the switch /2:3, the
program should get the second line pointer from the index file, go to the indicated position in the text file, and display the
line; then it should do the same thing for the third pointer in the index file.  Because of our convention of "deleting" lines
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by setting the high bit of the pointer, the high bit must be zeroed before doing this.  We assume that the lines are "numbered"
1, 2, 3, etc., with the zeroeth position in the index file being occupied by the line count.  In order to move to the proper
position in the text file, the DOS seek function is used.  You should also allow the following defaults for the switches --
"/Ln:" means to list from line n to the end of file; "/L:m" means to list from line 1 to line m; "/L" or "/L:" (or the switch
being omitted altogether) means to list the entire file.  If n:m expresses a range of lines greater than that contained in the
file, then just those lines in the file should be displayed.  If the high bit (bit 31) of the pointer to a line is set, then
instead of displaying the line (which has, by convention, been deleted from the file), the message "DELETED LINE" should be
displayed.  However, if the /D switch is present, even the deleted lines should be displayed (rather than the "DELETED LINE"
message).

3.   BINSERCH.ASM -- perform a binary search of the text file (assuming that the order of the records in the index file reflects a
completely sorted file).  The binary search is discussed in Chapter 5 of the text, and it should be reasonably clear how to
extend it to the case we are considering.  The "table" being searched here is essentially the index file (containing the
pointers) rather than the table of integers as in the book.  Note that before any pointer in the index file can be used, its
high bit (bit 31) must be cleared.  The syntax for BINSERCH is

BINSERCH textfile indexfile <stringfile

Here, the "string file" is a file containing strings to be searched for.  If the I/O redirection is omitted, these will simply
be typed in at the keyboard.  In either case, neither the text file nor the index file is given by redirection, and each must be
explicitly gotten from the parameter buffer in the PSP.  Output may be redirected, if desired by the user.  The output is as
follows:  for each input string, there will be an output message, with one message per output line.  The format of the messages
is as follows:  if the string is found, the message

STRING FOUND AT LINE n

is printed.  If the string is found but has been deleted (high bit of the pointer is one), the message

STRING FOUND AT LINE n, BUT IS DELETED

If not, the message,

STRING WOULD BE BETWEEN LINES n AND m

is printed.  Here, "m" is intended to be one greater than "n".  For example, searching the file

GOODBYE
HELLO
LENS
ZOOM

for "ZOOM" would result in "STRING FOUND AT LINE 4".  Searching for "HAL" would result in "STRING WOULD BE BETWEEN LINES 1 AND
2", while searching for "GANDER" would give "STRING WOULD BE BETWEEN LINES 0 AND 1" (even though there is no line 0).  If the
string is found, the line number displayed must be the number of the first line in the file which matches the string.  (If there
are several lines which are the same, a binary search can result in finding any of the lines, not necessarily the first).



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 282/361

HANDOUT

4.   INSERT.ASM -- insert a line of text into the textfile.  Again, this function assumes a sorted file (at least, that the pointers
give the proper sorted order).  This does not actually insert anything into the text file.  Rather, it puts the line at the end
of the text file and inserts a pointer into the pointer file (at the proper position) for the line.  Here is the syntax of
INSERT:

INSERT textfile indexfile <stringfile [/Ln]

This program actually provides two distinct functions.  If the /Ln is not present, it inserts each string in the stringfile into
its proper position in the text file by manipulating the pointers as suggested.  It must somehow search the textfile to find the
proper locations.  If the /Ln is present, the entire stringfile is simply inserted into the textfile prior to line n, regardless
of whether this would maintain the order.

5.   DELETE.ASM -- delete lines from the text file.  The textfile is not actually modified.  As with INSERT, the index file is
manipulated.  The syntax of DELETE is

DELETE textfile indexfile [<stringfile] [/Ln:m][/U]

If /Ln:m is present (with the defaults and conventions mentioned above), then the indicated lines are deleted.  This is done by
setting the high bits (bit 31) of the appropriate pointers in the index file.  If /Ln:m is not present, the indicated string
file is used; the textfile is searched for the lines in the stringfile, and those lines are deleted by the method just
mentioned.  Any lines not found in the file are, of course, not deleted.  If the /U switch is set, the operation is unchanged
except that the lines are "undeleted" from the text file.  That is, the high bits of the pointers are set to zero rather than to
one.

6.   CONDENSE.ASM -- condense the text file.  This puts the text file into the order indicated by the index file.  Syntax:

CONDENSE textfile indexfile newtextfile

The new text file need not be indexed by this procedure.  If re-indexing is desired, INDEX can be run.

7.   SEQSERCH.ASM -- sequentially search the text file for the given strings.  The syntax and characteristics of this program are
similar to BINSERCH, except that a different searching method is used.  In this case, however, the file is not assumed to be
sorted.  The exact syntax is

SEQSERCH textfile indexfile <stringfile [/Ln:m]

thus we allow a specific range of lines to be searched, if desired.

8.   MERGE.ASM -- merge two textfile/indexfile pairs.  The syntax is

MERGE textfile1 indexfile1 textfile2 indexfile2

This operation results in files 2 being unchanged, but files 1 being enlarged to contain all initial files.  The initial files
are assumed sorted.  Textfile 2 is simply appended to the end of textfile 1 by this operation, but indexfile 2 is shuffled into
indexfile 1 in such a way that the output file is properly sorted.
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SOME HINTS

It is clear that there is a lot of overlapping functionality in these programs.  Having the following things available would
help a lot:

A data item

PARAM_LOC DW   next location to be used in PSP parameter buffer (initially 81H)

Macros

NEXT_FILE location       ; Using PARAM_LOC, get next filename from the parameter buffer:  i.e., put a zero at the end of
; it and store its location.

GET_RANGE n,m            ; Using PARAM_LOC, search PSP parameter buffer for /Ln:m and save the values.  (Also, deal with
; the defaults.)

BIN_SERCH indhandle,txthandle,addressofstring     ; Search file for string, returning with Z set if found, and with
; DX:CX containing the line-number (or the preceding line-number, if not found).
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EVALUATION OF A REAL POLYNOMIAL
USING HORNER'S RULE

A POLYNOMIAL

r = u(z) = 5 + 4 z + 3 z2 + 2 z3 + z4

= 5 + z*(4 + z*(3 + z*(2 + z*(1))))

DATA FOR THE PROGRAM

N    EQU  4                        ; DEGREE OF POLYNOMIAL IS 5.
U    DD   5.0, 4.0, 3.0, 2.0, 1.0  ; COEFFICIENTS OF THE POLYNOMIAL.
Z    DD   10.0                     ; VALUE OF THE VARIABLE.
R    DD   ?                        ; THE ANSWER.

THE PROGRAM

; INITIALIZE TO USE HORNER'S RULE.
FLD  Z              ; GET Z INTO THE 8087.
MOV  SI,4*N         ; USE SI TO INDEX THE COEFFICIENT ARRAY, AND

; START WITH U[N].
FLD  U[SI]          ; GET U[N].
MOV  CX,N           ; LOOP N TIMES.

; EACH TIME TROUGH THE LOOP, MULTIPLY BY Z AND ADD COEFFICIENT.
; THROUGHOUT THE LOOP, ST(1) IS Z AND ST(0) IS THE RUNNING TOTAL.
AGAIN:

FMUL ST,ST(1)       ; MULTIPLY RUNNING TOTAL BY Z.
SUB  SI,4           ; MOVE TO NEXT COEFFICIENT.
FADD U[SI]          ; ADD THE COEFFICIENT TO THE RUNNING SUM.
LOOP AGAIN

; SAVE THE RESULT:
FSTP R              ; SAVE AND POP.
FSTP ST(0)          ; ALSO, POP Z FROM THE 8087.
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EVALUATION OF A REAL POLYNOMIAL
AT A COMPLEX ARGUMENT

THE ALGORITHM
T := 2X
S := X2 + Y2

A := UN
B := UN-1
FOR I := 2 TO N DO
BEGIN

C := B + T * A
B := UN-I - S * A
A := C

END
REAL PART OF R := X * A + B
IMAGINARY PART OF R := Y * A

THE PROGRAM
; Note that a complex number is stored as two real numbers in
; consecutive locations.
N    EQU  4                        ; POLYNOMIAL OF DEGREE 4.
U    DD   5.0, 4.0, 3.0, 2.0, 1.0  ; THE COEFFICIENTS.
Z    DD   10.0, 1.0                ; LET Z=10+i.
R    DD   ?, ?                     ; THE (COMPLEX) RESULT.

;   ST0   ST1   ST2   ST3   ST4   ST5   ST6   ST7
FLD   Z          ;    X
FLD   ST(0)      ;    X     X
FADD  ST,ST(1)   ;    T     X
FLD   Z+4        ;    Y     T     X
FLD   ST(0)      ;    Y     Y     T     X
FMUL  ST,ST(1)   ;   Y*Y    Y     T     X
FLD   ST(3)      ;    X    Y*Y    Y     T     X
FMUL  ST,ST(4)   ;   X*X   Y*Y    Y     T     X
FADDP ST(1),ST   ;    S     Y     T     X
MOV   SI,4*N
FLD   U[SI-4]    ;    B     S     Y     T     X
FLD   U[SI]      ;    A     B     S     Y     T     X
SUB   SI,8
MOV   CX,N-1

AGAIN:
FLD   ST(4)      ;    T     A     B     S     Y     T     X
FMUL  ST,ST(1)   ;   A*T    A     B     S     Y     T     X
FADDP ST(2),ST   ;    A   B+A*T   S     Y     T     X
FMUL  ST,ST(2)   ;   A*S  B+A*T   S     Y     T     X
FSUBR U[SI]      ; NEW_B  NEW_A   S     Y     T     X
SUB   SI,4
FXCH  ST(1)      ; NEW_A  NEW_B   S     Y     T     X

LOOP AGAIN
FMUL  ST(5),ST   ;    A     B     S     Y     T    A*X
FMULP ST(3),ST   ;    B     S    A*Y    T    A*X
FADDP ST(4),ST   ;    S    A*Y    T   B+A*X
FSTP  ST(0)      ;   A*Y    T   B+A*X
FSTP  R+4        ;    T   B+A*X
FSTP  ST(0)      ;  B+A*X
FSTP  R          ;  empty stack
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EVALUATION OF THE CONDITION CODE

JTABLE DW  UNNORM,NAN,NORM,INFINITY,ZERO,EMPTY,DENORM,EMPTY
STATUS DW ?

FXAM                ; SET CONDITION CODE BITS PROPERLY.
FSTSW STATUS        ; GET THE STATUS WORD.
FWAIT               ; WAIT FOR IT.

; MUST DO A LOT OF SHIFTS TO GET ALL OF THE BITS IN THE PROPER
; POSITION (i.e, TO GET C0, C2, AND C3 INTO BITS 0, 1, AND 2).

MOV AL,BYTE PTR STATUS+1      ; GET HIGH BYTE OF STATUS.
MOV BL,AL           ; SAVE C0
AND BL,1            ; IN BL.
SHR AL,1            ; DIVIDE BY 2 TO GET C1.
MOV BH,AL           ; SAVE C1
AND BH,2            ; IN BH.
SHR AL,1            ; DIVIDE BY 8 TO
SHR AL,1            ; GET C2 INTO
SHR AL,1            ; PROPER POSITION.
AND AL,4            ; MASK OUT EVERYTHING ELSE THAN C2.
OR  AL,BH           ; GET BACK BH.
OR  AL,BL           ; GET BACK BL.

; NOW HAVE 0-7 IN AL.  NEED 0-14 IN SI:
MOV AH,0
MOV SI,AX
ADD SI,AX
JMP JTABLE[SI]

;
UNNORM:
NAN:
NORMAL:
INFINITY:
ZERO:
EMPTY:
DENORM:
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A SLEAZY SOLUTION OF THE QUADRATIC EQUATION
0 = X2 + A X + B

A    DD   ?         ; DON'T CARE ABOUT THE VALUES OF THE COEFFICIENTS.
B    DD   ?
X1   DD   ?         ; PLACE FOR THE RESULTS.
X2   DD   ?
STATUS DW ?         ; PLACE FOR THE 8087 STATUS WORD.

FCLEX          ; GET RID OF ANY PREVIOUS EXCEPTION FLAGS.
;    ST0       ST1       ST2       ST3       ST4

FLD  A         ;     A
FLD1           ;     1         A
FADD ST,ST(0)  ;     2         A
FDIVP ST(1),ST ;    A/2
FCHS           ;   -A/2
FLD ST(0)      ;   -A/2      -A/2
FMUL ST,ST(1)  ;   (A/2)2    -A/2
FSUB B         ;  (A/2)2-B   -A/2
FSQRT          ;    SQRT     -A/2
FLD ST(0)      ;    SQRT     SQRT      -A/2
FADD ST,ST(2)  ;     X1      SQRT      -A/2
FSTP X1        ;    SQRT     -A/2
FSUBP ST(1),ST ;     X2
FSTP X2        ;
FSTSW STATUS   ; GET STATUS WORD INTO MEMORY.

; THE ERRORS WE HAVE TO LOOK FOR ARE:
;    IE   INVALID -- THIS OCCURS IF ROOTS ARE COMPLEX.
;    OE   OVERFLOW -- THIS OCCURS IF A WAS TOO BIG.
;    PE   PRECISION -- THIS OCCURS IF ROOTS ARE CLOSE TO ZERO OR A/2.
; OF THE OTHER EXCEPTIONS, ZE (ZERODIVIDE) CANNOT OCCUR AND DE
; (DENORMAL) AND UE (UNDERFLOW) ARE NOT OF INTEREST TO US.

FWAIT
TEST STATUS,1  ; IE?
JNZ  INVALID
TEST STATUS,8  ; OE?
JNZ  OVERFLOW
TEST STATUS,32 ; PE?
JNZ  PRECISION

OK:
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LECTURE NOTES FOR CS-5330:  IBM PC ASSEMBLY LANGUAGE
UNIVERSITY OF TEXAS AT DALLAS

CLASS 16

Comments

1.  In the previous lecture I gave a handout describing the
specifications for a final project that involved manipulations of a
data base.  This project consisted of 7 or 8 programs, of which I
specified that each person would write 3.  Please do not (like a bunch
of dummies) all choose the 3 easiest programs.  The programs together
provide many useful database functions, but individually the programs
are of no use.  That is, if you had a set of all of the programs, you
could use them to do something!  If you don't, you can't.  Therefore,
we need to make sure that every program is done by at least one person.
Also, you must stick to the specifications of the problem!  Otherwise,
your programs could not be used with somebody else's programs -- i.e.,
they cannot be used at all.  All of the final projects (that are
generally useful) and the best of the midterms will be distributed to
the entire class.  Among the projects I have heard about so far are:

Sorting of files
Enciphering and deciphering of files
Database manipulation
Fourier transforms
A parsing utility
Macros for high resolution graphics
Device drivers for:

Interrupt-driven serial I/O
User-definable character sets

Factoring of numbers
etc.

Once again, I have not yet had the chance to prepare an alternate final
project assignment, but I hope to in the next couple of days.

2.  Also, I have not looked at any of the midterm projects that have
been handed in, so be patient.

Review

In the previous class we discussed most of the 8087 numeric
coprocessor instruction set.  We discussed the pseudo-op

.8087

which informs the assembler that 8087 instructions are to be used.  We
also discussed the instructions

FINIT     -- initialize the 8087 coprocessor.
Fop       -- perform the operation op=ADD, SUB, MUL, or DIV.
FopP      -- same as Fop, but pop the stack.
FopR      -- same as Fop, but in reverse order.
FIop      -- same as Fop, but integer memory variable.
FIopR     -- same as FIop, but in reverse order.
FXCH      -- exchange registers.
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FCLEX     -- clear exception flags in the status word.
FSTSW/FNSTSW   -- save the status word in memory.
FXAM      -- set the condition code in the status word.
FABS      -- take absolute value.
FCHS      -- change sign.
FNOP      -- do nothing.
FRNDINT   -- round to integer.
FSQRT     -- take square root.
FLDLG2    -- load log(2), base 10.
FLDLN2    -- load ln(2).
FLDL2E    -- load log(e), base 2.
FLDL2T    -- load log(10),base 2.
FLDPI     -- load pi.
FLDZ      -- load zero.
FLD1      -- load one.

The status word, we found, was a word register in the 8087 that
contained the exception flags -- which are like the 8088 flags in that
they indicate various processing errors -- and also contained the
condition code bits -- which are also like the 8088 flags in that they
indicate the type of value being processed.

The six exception flags -- bits 0 through 5 of the status word --
indicated the following conditions:  IE (invalid operand), DE (denormal
number), ZE (zero divide), OE (overflow), UE (underflow), and PE
(precision loss).  These flags are "sticky bits".  Once set they remain
set until the FCLEX (clear exception) instruction is executed.

The condition code bits C0-C3 -- bits 8,9,10, and 14 of the status
word -- serve two purposes.  First, they are used to indicate the
result of comparison operations (discussed today).  Second, they are
used with the FXAM (examine ST) instruction to indicate if the stack
top is a "special" number.  C1 is used to indicate the sign, while C0,
C2, and C3 together form a 3-bit number (with value 0-7) indicating that
the number is

0    unnormal
1    NAN
2    normal
3    infinity
4    zero
5,7  empty
6    denormal

Of these, only the NAN, denormal, and unnormal numbers do not have an
obvious meaning.  A NAN (not-a-number) is an illegal bit pattern not
corresponding to any specific floating-point number.  A denormal number
is a number with an extended exponent range (beyond the TEMPORARY REAL
limit of 1E-4932), but with a compensating reduced precision.  An
unnormal number is the result of a calculation on a denormal number.

Comparison Instructions

Just as the 8088 has a CMP instruction which sets the CPU flags in
such a way as to indicate the relationship (<, >, =, etc.) between two
numbers, the 8087 has various comparison instructions that serve the
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same purpose (but for 8087 data types).  Here is a list of the
comparison instructions provided:

FCOM
FCOMP
FCOMPP
FICOM
FICOMP
FTST

We will not exhaustively consider every possible syntactical form of
these, since they are all outlined in the handout of the previous
lecture.  Basically, each of these instructions compares something
(i.e., some memory variable or some explicit or implicit register or
value) to the top of the stack, ST.  Here is how the condition code
bits are set on the basis of a comparison:

C0   C2   C3        CONDITION DETECTED
0    0    0         ST > compared value
0    0    1         ST < compared value
1    0    0         ST = compared value
1    1    1         don't know (for example, ST=NAN)

Notice that, unlike the 8088 CMP instruction, there is no meaningful
relation between these flags and the flags we would see using FSUB
followed by FXAM.  (The 8088 CMP instruction, on the other hand, is
almost the same as the 8088 SUB instruction.)

The only difference between the various comparison instructions
lies in which value is specified to be compared to ST, and in the
number of stack elements popped after the operation.  The instructions
with one trailing "P" pop one stack element, and the instruction FCOMPP
pops the top two elements.

The instructions FCOM, FCOMP, and FCOMPP are used to compare ST to
a real variable in memory, or to 8087 registers.  FCOMPP is more
restricted than the other two:  it always compares just ST and ST(1).
(Any other operands for FCOMPP wouldn't make sense since only ST and
ST(1) can be popped by the instruction.)

The instructions FICOM and FICOMP compare ST to an integer
variable in memory.  (An instruction like FICOMPP wouldn't make any
sense since ST(1) must be a TEMPORARY REAL and not an integer.)

Finally, the instruction FTST compares ST to the value 0.0.  That
is, the condition codes afterward reflect whether ST was positive,
negative, zero, or NAN.

Fortunately, the condition codes have been defined in such a way
that if we can manage to get the more significant byte of the status
word into the 8088's flag register, then we can use the 8088
conditional jump instructions in a very natural way.  Of course, to
understand this assumes that we understand how the bits of the 8088
flag register are arranged and that we recall the relationship between
the various conditional jumps and the settings of the 8088 flags.  The
8088 flag register is arranged like this:  bit 0=CF, bit 2=PF, bit
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4=AF, bit 6=ZF, and bit 7=SF.  Thus, the following code fragment would
put C0 put into CF, C2 into PF, and C3 into ZF:

FSTSW     STATUS         ; GET STATUS WORD.
FWAIT
MOV       AH,BYTE PTR STATUS+1
SAHF                     ; STORE UPPER BYTE IN FLAGS REGISTER.

Looking at the condition code table given earlier, the parity flag (PF)
will be set only for the NAN condition.  Thus, executing

JP        NAN

would leave us with only the cases

ZF        CF             CONDITION
0         0              ST > value
0         1              ST < value
1         0              ST = value

These are exactly the conditions used with the normal 8088 JA, JAE, JB,
JBE, JE, JNE instructions.  (Incidentally, since we normally redefine
the symbol "JP" as a macro rather than an instruction, the above JP
won't work.  Fortunately, there is an alternate name for the jump-on-
parity instruction, namely "JPE".)  For example, if we used the
instruction

JBE  address

the jump would be taken only if ST is less than or equal to the tested
value.  For ease of use, all of this can be combined in the following
macro:

; USED AFTER AN 8087 COMPARISON OPERATION.  THE ALLOWED CONDITIONS
; ARE A, AE, B, BE, E, NE.  THE ARGUMENTS ARE OPTIONAL.  IF NANADDRESS
; IS MISSING, NO NAN EXIT IS TAKEN.  IF ADDRESS (AND CCC) ARE MISSING,
; ONLY THE NAN EXIT IS USED.
FJP  MACRO     CCC,ADDRESS,NANADDRESS

LOCAL     STATUS,CONTINUE,DONE
FSTSW     CS:STATUS                ; GET STATUS WORD INTO MEMORY.
FWAIT                              ; WAIT FOR IT.
MOV       AH,BYTE PTR CS:STATUS+1  ; LOAD UPPER BYTE INTO AH
SAHF                               ; AND FROM THERE TO FLAGS REG.
JNP       CONTINUE                 ; IF NOT A NAN, CONTINUE.
IFNB      <NANADDRESS>             ; IF A NANE, JUMP TO NAN

JMP       NANADDRESS          ; PROCESSOR.
ELSE

JMP       DONE
ENDIF

STATUS DW      ?                        ; STORAGE FOR STATUS WORD.
CONTINUE:

IFNB      <ADDRESS>
J&CCC     ADDRESS             ; JUMP ON SPECIFIED CONDITION.

ENDIF
DONE:

ENDM
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To see how we might use the comparison operations, let us suppose
that we want to write a program fragment to read three numbers A, B,
and C from memory, rearrange them in ascending order, and write them
back into memory.  Here is an algorithm to do that:

;                      ST0       ST1       ST2
FLD  A         ; GET A INTO 8087.      A
FLD  B         ; GET B INTO 8087.      B         A
FCOM           ; COMPARE A AND B.
FJP  AE,OK1    ; IF B>=A, OKAY.
FXCH           ; OTHERWISE, SWAP.   MAX(A,B)  MIN(A,B)

; AT THIS POINT, WE KNOW THAT ST0>=ST1.
OK1: FLD  C         ; GET C INTO 8087.      C      MAX(A,B)  MIN(A,B)

FCOM           ; COMPARE C TO MAX.
FJP  AE,OK2    ; IF C>=ST, THEN DONE.

; AT THIS POINT, WE KNOW THAT EITHER C MUST BE SWAPPED WITH ST1,
; OR ELSE C (ST), ST1, AND ST2 MUST BE ROTATED:

FCOM ST,ST(2)  ; COMPARE C AND MIN(A,B).
FJP  AE,SWP    ; IF GREATER, JUST SWAP C AND ST1.

; NEED TO ROTATE ST0, ST1, AND ST2:
FSTP ST(3),ST  ;                    MAX(A,B)  MIN(A,B)     C
JMP  OK2

; NEED TO SWAP ST0 AND ST1:
SWP: FXCH           ;                    MAX(A,B)      C     MIN(A,B)
; DONE.  AT THIS POINT, ST0>=ST1>=ST2:
OK2: FSTP C         ;                   MID(A,B,C) MIN(A,B,C)

FSTP B         ;                   MIN(A,B,C)
FSTP A         ;                     empty

As mentioned before, our systematic discussion of the 8087 is now
at an end (though we will return to discussing the 8087 occasionally
from now on), so we will proceed to the next topic:  The IBM PC BIOS.

ASSIGNMENT:  Read Chapter 6 in the text.

The IBM PC BIOS

MS-DOS, like many other operating sytems, is built up in several
"layers".  Lower levels of the operating system are able to handle very
simple and primitive operations, like displaying a character on the
screen, while higher levels are able to do more sophisticated
operations like managing the file system.  In general, every
sophisticated operation handled by the higher levels of the operating
system is made up of a number of primitive operations handled by the
lower levels.  In particular, higher levels in the operating system do
not directly perform I/O of any kind.  They often appear to do I/O, but
in reality they are just calling the lower levels of the operating
system, which then do all of the real work.

For our purposes, we will speak of DOS as having just two such
layers.  The lower level is known as the "BIOS" (Basic I/O System),
while the higher level is known (confusingly) as "DOS".  The reason for
making such distinctions has to do with compatibility of programs when
run on various different computers.  We have already seen how I/O
operations can be performed by using DOS interrupt 21H -- programs
using DOS interrupts for I/O will run on any MS-DOS based computer
(such as an IBM PC, a TI PC, etc.) because it is the essential job of
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DOS to provide a uniform interface between the user and the computer.
MS-DOS itself, however, is ignorant of all hardware details of the
computer.  DOS does not understand about different brands of printers,
different display cards, different keyboards, etc.  DOS simply employs
the BIOS to perform all primitive I/O functions and takes for granted
that the BIOS understands all of the hardware details.

In general, then, MS-DOS itself is identical on all computers
(except that one might have a newer or older version), but the BIOS
differs on every machine, except close clones.

Just as our programs communicate with DOS by means of the "DOS
interrupt" 21H (or other DOS interrupts we haven't discussed), our
programs can communicate directly with BIOS by using BIOS interrupts.
Many of the functions provided by BIOS interrupts are similar to those
provided by some DOS functions, and for these DOS simply passes any
function requests it gets directly to BIOS.  This means that direct
BIOS calls operate somewhat more quickly than the corresponding DOS
calls, since the overhead of a DOS call is avoided.  However, it is
wiser (in my opinion) to avoid the practice of calling BIOS directly
(except when absolutely unavoidable) for the sake of compatibility.

BIOS interrupts provide two types of functions.  First, it
provides standard functions required by MS-DOS, with a calling sequence
that is likely to be the same for every computer.  There is no point
using such functions since DOS itself provides a uniform interface to
them.  Second, BIOS provides functions which aid in using special
hardware features of the machine and are therefore likely to differ in
all machines that are not close clones (since the hardware features are
likely to be different).

To take the simplest example of such a hardware-related BIOS call,
the IBM PC has a BIOS interrupt for performing I/O on a cassette tape.
(Cassette tapes used to be used for mass storage of programs and data
before disk-drives became inexpensive.  Of course, this practice was
obsolete before the IBM PC was introduced, so it is unclear what the
purpose of providing such I/O was.)  However, (it is probable that) no
clone of the IBM PC has a cassette port, and no such BIOS interrupt is
generally available on other machines.

Thus, the situation we have is this:  a) generally, BIOS functions
should be used only when they access a special (non-common) hardware
feature of the machine; and b) therefore, these BIOS calls won't work
on other machines and therefore should not be used.  Or, to summarize,
BIOS calls should never be used.

In the very likely event that nobody will take this argument
seriously except me, let us now discuss some of the available BIOS
functions.  The textbook describes many of these functions (including
some useless ones) in great detail.  I will adopt a similar practice,
except that my chosen set of useful BIOS interrupts will be different.
Before going into this, however, it would be useful to discuss the use
of "interrupts" in the IBM PC and clones.
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Interrupts

We have seen that it can be very useful to divide our programs up
into separate procedures, each with some well-defined functionality,
and to build up our programs by combining these building-block
procedures, rather than to continually be rewriting the same algorithms
into our programs.  The operating system can be thought of as a set of
such building-block utilities -- utilities to read and write
characters, to open and close files, to input and output strings, etc.
However, unlike our procedures, the DOS procedures cannot be linked to
our programs; rather, they are always in memory.  To call DOS
procedures we must seemingly know their actual addresses and not merely
their names.

Actually, MS-DOS avoids this problem by using the ability of the
8088 microprocessor to employ software interrupts.  The software
interrupt system is very much like a big jump-table, accessing all of
the DOS procedures.  At the beginning of memory (i.e., at address 0:0)
there is a table of interrupt vectors.  An interrupt vector is a
doubleword pointer (segment:offset) to a piece of code very much like a
procedure.  As far as the program is concerned, however, these
"procedures" are accessed by interrupt-number rather than by address.
Interrupt numbers run from 0 to 255, so the first 256*4=1024 bytes of
memory are used to store interrupt vectors.

This will, perhaps, be clearer with examples.  The first four
positions in memory (i.e., interrupt vector 0) constitute the
segment:offset of a "procedure" that we will refer to as
DIVIDE_BY_ZERO.  The next four positions (interrupt vector 1) point to
a procedure SINGLE_STEP.  The next four (interrupt vector 2) point to
NON_MASKABLE, etc.  Now, if we had the desire to call the procedure
DIVIDE_BY_ZERO, we could simply do so with a CALL instruction if we
happened to know its address.  (Actually we couldn't, since
DIVIDE_BY_ZERO is not actually a procedure -- we are simply pretending
that it is.  For reasons discussed below, we would first have to use
the PUSHF instruction to push the flag register onto the stack, and
then we would have to execute a FAR CALL to the procedure.)  Since this
address is stored at location zero, we could (with a few instructions)
retrieve the address and call the procedure.  Similarly, with jump-
table type manipulations we could call either SINGLE_STEP or
NON_MASKABLE.

This is too much work, since with the software interrupt system we
can each procedure with just one instruction:

INT  interrupt_number

calls the indicated procedure in the interrupt vector table.  Thus, INT
0 would call DIVIDE_BY_ZERO, INT 1 would call SINGLE_STEP, ..., INT 21H
would call procedure 33 (whose address is stored at 4*21H=84H), etc.

Actually, we have been oversimplifying.  The interrupt vectors are
used not just by software interrupts, but by hardware interrupts as
well.  Various I/O devices attached to the computer are capable of
"interrupting" the CPU by sending it an electrical signal when
attention is desired.  The CPU then responds by calling the appropriate
procedure from its interrupt vector table.  This is one of the reasons



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 295/361

CLASS 16

why you can type on the computer's keyboard and not lose any
characters, even if the computer is busy -- pressing a key on the
keyboard sends an interrupt to the 8088, which then stops whatever it
is doing and processes the interrupt (the key press) immediately.
Since hardware interrupts can occur asynchronously -- that is, at any
time -- it is important for the interrupt procedures to ensure that all
registers (especially the flag register) are the same when they return
as when they were called.  For this reason, hardware interrupts and
software interrupts (using INT) automatically push the 8088 flag
register onto the stack, as well as performing a FAR CALL to the
interrupt routine.  There is also a special form of the RET instruction
to pop the flag register on return.  This special instruction is the
IRET instruction -- all interrupt-processing routines must be
terminated with IRET rather than with RET.  This is what I mean by
saying that interrupt-processing routines, with addresses stored in the
interrupt vector table, are not true procedures (at least, as we have
used the term in the past).  On the other hand, the interrupt
processing routines are almost certainly "procedures" in the sense that
they were assembled with PROC and ENDP directives.

Interrupt-driven I/O is much more efficient than polled I/O, in
which the operating system periodically checks to see if any device
wants to be service.  Prior to the IBM PC, microcomputers typically did
not provide interrupt-driven I/O (presumably because it was a little
more trouble to do).  Therefore, this is one of the few areas in which
IBM deserves praise for providing quality rather than sleaze, as far as
the IBM PC is concerned.

Useful BIOS Interrupts

The following are the IBM PC BIOS interrupts in which we will be
interested (I am told that some of them do not work on the TI PC, but I
have been unable as yet to come up with the appropriate TI
information):

INTERRUPT                     FUNCTION
5H                       Print screen

10H                        Video I/O
11H                      Equipment check
14H                        Serial I/O
1BH                       Keyboard break
1CH                        Timer tick
1FH                  Graphics character table

Most of the other BIOS interrupts mentioned in the book should never be
used (for the reasons mentioned earlier).  Indeed, most of the
interrupts we will discuss have only a limited use (or are used only
when you are trying to program very cute and clever things).

Let us discuss these interrupts in numerical order.

INTERRUPT 5H prints the screen on the printer.  It is equivalent
to pressing the print-screen button on the keyboard and is, in fact,
executed when the print-screen button is pushed.  The reading
assignment discusses how to use this feature in your program, so we
won't go into it further here.  This interrupt is interesting in
another respect, in that it is one of the few interrupt-vectors you can
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profitably change.  Suppose that you have written a program which
performs some function that you would like to always have available at
the touch of a key, but that you don't want to build in to all of your
programs (or into WordStar, the Macro Assembler, etc.).  For instance,
you might want to press a key and have the time of day automatically
displayed in the upper right-hand corner of the screen.  One way you
could provide such a function is this:  If you could arrange for your
program to be kept always in memory, then you could go to the position
in the interrupt vector table which stores the address of interrupt
routine 5 (i.e., address 4*5=20), and you could change the address to
be that of your program.  Then, whenever the print-screen button is
pressed, your program would be executed rather than the print-screen
function.  Actually, it is slightly more complicated than this since
there are requirements of such interrupt routines which we haven't
discussed, nor have we discussed how to keep programs in memory rather
than having to continually reload them from disk.  These things can all
be done, however, and I am willing to tell you how to do them (in
private).

For the moment, let us skip interrupt 10H since it is the most
complex of the interrupts.  We will come back to it in a moment.

INTERRUPT 11H the "equipment check" function.  This does not check
that the equipment is functioning correctly;  rather, it returns a word
which gives an inventory of some of the devices which are supposed to
be attached to the PC.  (Actually, it reads the values of various
switches which were supposed to have been correctly set by the owner of
the computer to indicate what peripheral devices are available for the
program to use.)  This information is useful if the program is
intendend to run on several different computers that may be equipped
differently.  Of course, so far all of our programs would have run on
any MS-DOS based machine, so this information would not have been of
use.  The textbook gives the format of this inventory word, so we will
not talk about it further, except to say that the basic use of the
equipment check function is that the following questions can be
answered from it:

1)   Is there a printer attached?
2)   Is there a serial port attached?
3)   Is an IBM compatible monochrome or color display card used

(and, if so, which one)?

These questions are important if you use some of the BIOS functions
mentioned below or if you try to directly program the hardware.

INTERRUPT 14H performs serial I/O using the RS-232 interface.  We
have not talked about serial I/O (though we may do so later), so this
will not be meaningful to many of us.  For those to whom serial I/O is
no mystery, let me say the following.  It is almost impossible to
perform serial I/O using MS-DOS or BIOS functions.  It is almost always
necessary to directly program the serial I/O hardware (the Universal
Asynchronous Receiver-Transmitter, or "UART").  Therefore, interrupt
14H is almost useless for I/O.  However, interrupt 14H also has an
initialization function, as well as providing I/O functions, and can
profitably be used to initialize the serial hardware.  In order to
initialize the serial interface, we must:  a) load AH with 0 (to select
the initialization function rather than the I/O functions); b) load AL
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with a byte indicating the desired parameters of the serial I/O
protocol; and c) INT 14H.  Here is the meaning of the various bits that
must be assigned via the AL register:

BITS           PARAMETER           MEANING OF THE VALUES

7,6,5            baud         0=110 baud, 1=150, 2=300, 3=600
4=1200, 5=2400, 6=4800, 7=9600

4,3             parity            0=ignore, 1=odd, 3=even

2             stop bits            0=1 stop, 1=2 stops

1,0           word length           2=7 bits, 3=8 bits

If, for example, we wanted to use 9600 baud, no parity, 1 stop bit, and
8 bit words, we would use the code

MOV  AL,11100011B
MOV  AH,0
INT  14H

where, for clarity, the fields in AL are successively in italics and in
normal type.

INTERRUPT 1CH is used when the ctrl-break key is pressed.  Thus,
like interrupt 5, the interrupt vector for this function could (in some
circumstances) be profitably changed to point to a routine of yours
rather than the ctrl-break routine selected by DOS.

INTERRUPT 1DH is the timer tick interrupt.  As mentioned earlier,
the interrupt routines are executed not only when an INT instruction (a
software interrupt) is executed, but when a hardware interrupt occurs -
- that is, when certain electrical signals are sent to the CPU by
peripheral devices.  One type of hardware interrupt, generated by a
"clock" chip, causes the CPU to update a count in memory.  Since these
interrupts occur regularly (18.2 times per second), this count can be
interpreted as a "time of day".  Now, when the time-of-day interrupt
occurs, an interrupt 1DH is also executed.  The 1DH interrupt actually
does nothing, but the interrupt vector could be changed to point to one
of your own routines.  Thus, if you can think of anything you'd like to
do 18.2 times per second, this interrupt could profitably be used to do
it.  The most common use for this interrupt would be to provide a real-
time clock which continually displays the correct time (at least,
accurate to within 1/18.2 seconds) on the screen.

INTERRUPT 1FH is not actually an executable interrupt.  rather,
the interrupt-vector table simply uses this position to store a useful
address.  That useful address is the address of a user-definable
character set.  Normally, interrupt vector 1FH (that is, the value
stored at 4*1FH=7CH in memory) has the value 0:0, which is used to
indicate that no user-definable characters are used.  If, instead, this
is changed to some other value, the value is interpreted as the address
of a table of character shapes.  The user-definable characters are the
codes 128-255 (with the shapes of the normal ASCII characters 0-127
being fixed).  The user-defined characters are seen only if the
computer is in "graphics mode" (we will discuss what this means in a
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moment), and are irrelevant to the normally used 25x80 text mode of the
display.  We will discuss the form of the character definition table
when we learn (in a future lecture) how the IBM PC video display is
directly accessed by memory manipulations.

INTERRUPT 10H is the most useful BIOS interrupt to the programmer.
Interrupt 10H is used to provide the standard character output function
(you should not use it for this, however), as well as to provide some
additional control over the video display.  Many of the features which
this interrupt is typically used to control are also controlled by the
ANSI driver.  The ANSI driver should be used in preference to interrupt
10H whenever possible, so I will only talk about interrupt 10H
functions not provided by the ANSI driver.

Before doing this, however, we should talk a little about the
various video modes of the IBM PC.  In some modes, the PC is capable of
displaying only alphanumeric characters.  In others, it displays
graphics and characters.  The graphics modes are more flexible, but
also operate more slowly.

The most common modes are the 80x25 black&white and the 80x25
color text modes.  The "80x25" refers to the fact that the display
consists of 80 columns and 25 rows.  Whether or not color is available
depends on whether the computer has a monochrome or a color monitor
(i.e., CRT or screen) and on how the PC is equipped internally.
Normally, an IBM PC is equipped internally with either a "monochrome
display adapter" card or with a "color adapter card".  (There are also
other possibilities, such as a "Hercules graphics card", which we won't
discuss.)  Color adapter cards differ from monochrome adapter cards not
only in that they display color, but also in that they allow the use of
high-resolution graphics.  With a monochrome card, only the 80x25
black&white (or 40x25) display mode can be used.  With a color adapter,
there are two typically used high-resolution graphics modes as well:
the 320x200 color graphics mode and the 640x200 b&w graphics mode.

The picture you see displayed by the computer is actually composed
of a large number of small dots called "pixels".  In black&white mode,
each pixel is either black (invisible) or white (visible).  In color
mode, each pixel can be one of several colors.  When alphanumeric
(ASCII) text is displayed, the computer itself actually decides which
pixels are visible and which are invisible, on the basis of its
knowledge of the shapes of the characters.  When graphics are
displayed, however, each pixel on the screen is individually set or
cleared by the program.  Thus, pictures of arbitrary complexity can be
drawn, up to the "resolution" of the display mode.  In the 320x200
color mode, the computer resolves the displays into 320 columns of
pixels and 200 rows of pixels.  Each pixel can be one of four colors,
from a "palette" of colors selected by the program.  In 640x200 mode,
there are instead 640 columns of pixels, so the resolution is twice as
great in the horizontal direction.  On the other hand, each pixel can
be only black or white.  The computer is also smart enough to allow you
to continue to use alphanumeric characters in "graphics" mode.

Like DOS interrupt 21H, the BIOS video I/O interrupt 10H allows a
selection of various functions, based on the value of the AH register.
Function AH=0 is the "select video mode" function, and selects from
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among the video modes mentioned above (and others).  This function is
not to be used, since the ANSI driver provides this feature as well.

Function AH=1 is probably the most useful function.  It allows you
to set the size of the cursor.  The cursor consists of a series of
horizontal lines.  For the monochrome card, these lines are numbered 0
to 13 (from top to bottom), while for the color card they are numbered
0 to 7 (from top to bottom).  Normally the cursor consists of lines 11
and 12 in monochrome and lines 6 and 7 in color.  You can, however,
change this default.  The arguments for this function are:  the top
cursor line number in CH, and the bottom cursor line number in CL.
Thus,

MOV  AH,1           ; SELECT CURSOR SIZE.
MOV  CH,0           ; TOP LINE IS TOP.
MOV  CH,7           ; BOTTOM LINE IS BOTTOM.
INT  10H            ; CALL BIOS.

would change the cursor to a full-size block with a color adapter, and
to half of a block with a monochrome adapter.

Function AH=2 is used to change the cursor position.  Normally,
this is of no interest since the ANSI driver allows us to do the same
thing with the CUP command.  However, if we are using several video
"pages" this becomes important.  The monochrome adapter allows no extra
pages; the color adapter, on the other hand allows up to four video
pages.  What is a "page"?  We can think of the video display as a book,
in which at any one time we can only see one page.  There are, however,
other pages, and if we knew how to change the pages we could see what
was being displayed there.  Normally, what is displayed is page 0.
With the color adapter there are also pages 1, 2, and 3.  Function AH=2
does not allow us to change the pages, but it does allow us to move the
cursor to a new page.  (That is, since the cursor would then be on a
page not displayed, we wouldn't see it any more.)  Function AH=5 is
used to change the active display page.  Thus, functions AH=2 and AH=5
are used in conjunction with each other.  (To see the exact arguments
of these functions, look on p. 206 of the text.)  The importance of
this fact is that if we have some complicated display on the screen,
then we can switch to another video page, display something else, and
then return to our original page without having to redraw the
complicated display.  This is useful for many things, such as help
screens and so forth.  Here is a short "typewriter" program that
illustrates the use of a paged display:  it switches to page 1, does
I/O for a while, and then flips back to an undisturbed page 0:
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; CHANGE TO PAGE 1.
MOV  AH,5           ; PAGE DISPLAY FUNCTION.
MOV  AL,1           ; PAGE 1
INT  10H            ; CALL BIOS.

; MOVE CURSOR TO PAGE 1.
MOV  AH,2           ; MOVE CURSOR FUNCTION.
MOV  DH,0           ; ROW 0.
MOV  DL,0           ; COLUMN 0.
MOV  BH,1           ; PAGE 1.

; TYPEWRITER PART.
AGAIN:

GETCHR              ; GET KEYBOARD CHARACTER.
CMP  AL,27          ; ESCAPE?
JE   DONE           ; QUIT IF SO.
PUTCHR              ; DISPLAY ON THE SCREEN.
JMP  SHORT AGAIN

; CHANGE BACK TO PAGE 0.
MOV  AH,5           ; PAGE DISPLAY FUNCTION.
MOV  AL,0           ; PAGE 0
INT  10H            ; CALL BIOS.

; MOVE CURSOR TO PAGE 0.
MOV  AH,2           ; MOVE CURSOR FUNCTION.
MOV  DH,0           ; ROW 0.
MOV  DL,0           ; COLUMN 0.
MOV  BH,0           ; PAGE 0.

In theory, the row and column selected by the AH=2 function are based
on (0,0) being the upper left-hand corner of the screen.  In practice,
(0,0) seems to be the last position used before the page was changed!
Thus, the sample program shown ends up at the original cursor position
on the original page.  (And, if it is executed again, the cursor for
the typewriter part will start at the same position it left off at
before.)

Though there is no need to say more about them than the book says
already, functions AH=6 and AH=7 ("scroll active page up" and "scroll
active page down") are also rather useful.  They allow any rectangular
"window" in the active display page to be scrolled up or down by any
number of lines.

In general, there are no other useful BIOS interrupt 10H
functions.  There are several character output functions whose basic
virtues seem to be that they allow various "attributes" (blinking,
reverse video, background color, etc.) of the character to be set.  Of
course, these functions are provided by the ANSI driver, so they are of
no special interest to us.  Though not generally useful, in the next
lecture we will discuss several of the graphics functions provided in
interrupt 10H.
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MACRO TO CONDITIONALLY JUMP FOR AN 8087 CONDITION

; USED AFTER AN 8087 COMPARISON OPERATION.  THE ALLOWED CONDITIONS
; ARE A, AE, B, BE, E, NE.  THE ARGUMENTS ARE OPTIONAL.  IF NANADDRESS
; IS MISSING, NO NAN EXIT IS TAKEN.  IF ADDRESS (AND CCC) ARE MISSING,
; ONLY THE NAN EXIT IS USED.
FJP  MACRO     CCC,ADDRESS,NANADDRESS

LOCAL     STATUS,CONTINUE,DONE
FSTSW     CS:STATUS                ; GET STATUS WORD INTO MEMORY.
FWAIT                              ; WAIT FOR IT.
MOV       AH,BYTE PTR CS:STATUS+1  ; LOAD UPPER BYTE INTO AH
SAHF                               ; AND FROM THERE TO FLAGS REG.
JNP       CONTINUE                 ; IF NOT A NAN, CONTINUE.
IFNB      <NANADDRESS>             ; IF A NANE, JUMP TO NAN

JMP       NANADDRESS          ; PROCESSOR.
ELSE

JMP       DONE
ENDIF

STATUS DW      ?                        ; STORAGE FOR STATUS WORD.
CONTINUE:

IFNB      <ADDRESS>
J&CCC     ADDRESS             ; JUMP ON SPECIFIED CONDITION.

ENDIF
DONE:

ENDM

CODE TO ARRANGE THREE FLOATING POINT NUMBERS IN ASCENDING ORDER

A    DD   ?
B    DD   ?
C    DD   ?

;                      ST0       ST1       ST2
FLD  A         ; GET A INTO 8087.      A
FLD  B         ; GET B INTO 8087.      B         A
FCOM           ; COMPARE A AND B.
FJP  AE,OK1    ; IF B>=A, OKAY.
FXCH           ; OTHERWISE, SWAP.   MAX(A,B)  MIN(A,B)

; AT THIS POINT, WE KNOW THAT ST0>=ST1.
OK1: FLD  C         ; GET C INTO 8087.      C      MAX(A,B)  MIN(A,B)

FCOM           ; COMPARE C TO MAX.
FJP  AE,OK2    ; IF C>=ST, THEN DONE.

; AT THIS POINT, WE KNOW THAT EITHER C MUST BE SWAPPED WITH ST1,
; OR ELSE C (ST), ST1, AND ST2 MUST BE ROTATED:

FCOM ST,ST(2)  ; COMPARE C AND MIN(A,B).
FJP  AE,SWP    ; IF GREATER, JUST SWAP C AND ST1.

; NEED TO ROTATE ST0, ST1, AND ST2:
FSTP ST(3),ST  ;                    MAX(A,B)  MIN(A,B)     C
JMP  OK2

; NEED TO SWAP ST0 AND ST1:
SWP: FXCH           ;                    MAX(A,B)      C     MIN(A,B)
; DONE.  AT THIS POINT, ST0>=ST1>=ST2:
OK2: FSTP C         ;                   MID(A,B,C) MIN(A,B,C)

FSTP B         ;                   MIN(A,B,C)
FSTP A         ;                     empty
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A TYPEWRITER PROGRAM WITH PAGING

; CHANGE TO PAGE 1.
MOV  AH,5           ; PAGE DISPLAY FUNCTION.
MOV  AL,1           ; PAGE 1
INT  10H            ; CALL BIOS.

; MOVE CURSOR TO PAGE 1.
MOV  AH,2           ; MOVE CURSOR FUNCTION.
MOV  DH,0           ; ROW 0.
MOV  DL,0           ; COLUMN 0.
MOV  BH,1           ; PAGE 1.

; TYPEWRITER PART.
AGAIN:

GETCHR              ; GET KEYBOARD CHARACTER.
CMP  AL,27          ; ESCAPE?
JE   DONE           ; QUIT IF SO.
PUTCHR              ; DISPLAY ON THE SCREEN.
JMP  SHORT AGAIN

; CHANGE BACK TO PAGE 0.
MOV  AH,5           ; PAGE DISPLAY FUNCTION.
MOV  AL,0           ; PAGE 0
INT  10H            ; CALL BIOS.

; MOVE CURSOR TO PAGE 0.
MOV  AH,2           ; MOVE CURSOR FUNCTION.
MOV  DH,0           ; ROW 0.
MOV  DL,0           ; COLUMN 0.
MOV  BH,0           ; PAGE 0.
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CLASS 17

Comments

1.  I have prepared an alternate final project for those of you who are
not keen on the database manipulation project.  The new project
involves infinite precision arithmetic.  I hope it interests you,
because my imagination has been completely depleted.  If you don't like
this one, you'd better think of something else quite rapidly.

2.  Several of you have noticed that the book by Jump, Programmer's
Guide to MS-DOS for the IBM PC, is quite useful, but also quite
unavailable.  I have recently found another book, The MS-DOS Handbook
by King, which is very similar to Jump's book, but with a concentration
on somewhat different areas.  Also, there is a new book by Peter Norton
which could be useful; its title is similar to Jump's title.  Both of
the latter books are available in the Doubleday bookstore at Northpark
shopping center.

Review

In the previous class, we completed our systematic discussion of
the 8087 coprocessor and began discussing the IBM PC BIOS calls.

We discussed the 8087 comparison instructions,

FCOM
FCOMP
FCOMPP
FICOM
FICOMP
FTST

which were somewhat similar to the 8088 CMP instruction.  These
instructions set various condition code bits (in the 8087 status word)
as a result of the comparison.  The status word then had to be stored
in memory with the FSTSW instruction so that it could be examined by
means of 8088 instructions.  Fortunately, Intel arranged the condition
code bits of the status word in such a way that they could be loaded
into the 8088 flag register and used more-or-less directly and
straightforwardly for conditional jumps.

We began discussing the IBM PC BIOS.  The BIOS, or Basic I/O
System is a "lower level" of the operating system which handles all of
the hardware-related details of I/O.  MS-DOS itself is above such stuff
and really knows almost nothing about the hardware.  Thus, DOS calls
should be generally used for compatibility from computer to computer,
but BIOS calls are sometimes unavoidable when special features of the
hardware are to be used.

Programs interface with DOS and with BIOS via software interrupts.
Software interrupts (the INT instruction) and hardware interrupts use
the interrupt-vector table at the beginning of memory as a jump-table
giving the addresses of various DOS and BIOS functions.  There are 256
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possible interrupts (0-255), each with a doubleword address, so the
interrupt vector table is 256*4=1024 bytes long.

A number of interrupts are used to access DOS.  The most common
DOS interrupt is 21H, which we have used quite often.  BIOS also has a
number of interrupts assigned to it.  In the previous lecture, we
discussed 7 BIOS interrupts:

INTERRUPT                     FUNCTION
5H                   Print screen

10H                   Video I/O control
11H                   Equipment check
14H                   Serial I/O control
1BH                   Keyboard break function
1CH                   Timer tick
1FH                   Point to definable character set

There is no reason to go into these again, except for interrupt 10H,
which is rather important.

Of the many functions provided by interrupt 10H, we have discussed
so far only function AH=1 (which is used to select the cursor size),
function AH=2 (which is used to select the cursor position), and
function AH=5 (which is used to select the video "page" being
displayed).  In general, the ANSI CUP function should be used in
preference to the AH=2 function unless the paged feature of the display
is used.  The video display is like a book, for which only one page can
be seen at a time.  Functions AH=2 and AH=5 together provide a way of
switching from page to page.

We also discussed the most common video hardware with which the
IBM PC can be equipped.  The "monochrome card" allows only the display
of text in black and white, with no paged display.  The "color adapter"
card, on the other hand, allows both text and graphics, in color, and
with a paged display in text mode.  There are also various other
display cards, which we did not discuss; nor did we discuss the
available hardware on other computers, such as the TI PC.

ASSIGNMENT:  Read chapter 7 of the textbook.  (This chapter is
remarkable, in that it is one of the few chapters on graphics in any
book on the IBM PC that never gets around to discussing anything about
graphics!)

Simple Computer Graphics

Since the computer display consists of a large number of closely
spaced dots (pixels), the most primitive possible graphics operation is
to light up one of these dots.  Moreover, every less primitive graphics
operation, such as drawing lines, circles, etc., can be construed as a
sequence of dot operations.  Clearly, then, the first thing we should
learn how to do in computer graphics is to light up a pixel.

(This comment applies to the IBM PC color adapter and to most
other types of graphics displays on microcomputers -- however, it is
not universally true.  With certain hardware, it is more reasonable to
consider line drawing as the primitive operation.  For the computers at
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our disposal, this is not a real concern.  As mentioned before, of
course, with the IBM monochrome adapter, no graphics can be done.)

Unfortunately, there is no uniform way to do this on all
computers.  We will see, however, that we can still develop a uniform
software interface for the graphics on each machine.  To do this, we
need a workable model of the display that we can use for every
computer.

We will suppose, as mentioned, that the display is divided into a
rectangular grid of pixels, each one of which can be either "on" (i.e.,
visible) or "off" (invisible).  The number of rows of pixels on the
screen will be called NUM_ROWS, while the number of columns of pixels
will be called NUM_COLS.  The rows are numbered from 0 to NUM_ROWS-1,
with row zero being at the top of the screen.  The columns are numbered
from 0 to NUM_COLS-1, with zero being at the left of the screen.  This
model corresponds closely to the actual situation on the IBM PC and
many other PCs.  (For instance, on the TI PC, with three-plane
graphics, NUM_ROWS=300 and NUM_COLS=720.)  Our primitive graphics
operation is embodied in a macro

DRAW_DOT ROW,COLUMN

which turns on the dot at the indicated row and column.  Although we
have not yet discussed how such a macro might be written, let us assume
that such a macro exists on every computer -- i.e., on all IBM PCs, all
TI PCs, etc.  If this is the case, it would be logical for us to write
all of our graphics procedures in terms of this hardware-dependent
macro (and the constants NUM_ROWS and NUM_COLS) alone.  We could then
re-assemble our programs on any machine and they would work without
change to the source code.

Note that the choice of DRAW_DOT as a macro rather than a
procedure is not arbitrary.  When we do computer graphics, we typically
turn on thousands or tens of thousands of dots.  If the dot-drawing
process has a lot of overhead associated with it -- for example, the
time required to call a procedure -- the drawing speed of our program
visibly slows down.  With a macro, there is no time-overhead since
there is no CALL, and the graphics can be drawn much more quickly.

There are several steps usually necessary in doing our computer
graphics.  First, when the computer is turned on, it is in "text" mode
rather than "graphics" mode.  That is, it can display text, but not
graphics.  To display graphics, we must first "turn on" graphics mode.
This is done with the SM ANSI driver command.  (Recall the ANSI driver
handout.)  This macro has the syntax

SM mode

where the mode operand specifies the desired mode of the display.  The
choices are

MODE                DESCRIPTION
0                 40x25 black and white
1                 40x25 color
2                 80x25 black and white
3                 80x25 color
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4                 320x200 color
5                 320x200 black and white
6                 640x200 black and white

The first four modes are text modes (with only modes 2 and 3 being in
common use), while the last three modes are graphics modes.  (The ANSI
driver also allows a MODE=7.  This turns on line wrap -- typing past
the end of the line automatically continues at the beginning of the
next line.  The ANSI command RM 7 turns off line wrap.  Of course, this
is not at all relevant to graphics.)  Thus, the first thing we normally
do in our graphics program is to use the ANSI command

SM 4      or        SM 5      or        SM 6

Once in one of these graphics modes, the screen corresponds to our
model of it, with NUM_ROWS=200 and NUM_COLS=320 or 640.

Next, of course, we would typically use a sequence of DRAW_DOT
commands (or procedures using DRAW_DOT commands) to turn on the correct
arrangement of pixels.

Finally, after giving the viewer a chance to look at the display,
we would finally return to text mode with, for example,

SM 3

Note that the SM command automatically clears the screen for us.

As the simplest example of an application for DRAW_DOT, let us
consider a macro to draw a horizontal line.  A horizontal line is, of
course, confined to some particular row (called, say, "ROW") of the
display.  To draw such a line, we would only need to set every pixel in
ROW between the starting and ending columns:

; MACRO TO DRAW A HORIZONTAL LINE.  BY ASSUMPTION, COL1<COL2.
DRAW_HORIZONTAL MACRO ROW,COL1,COL2

LOCAL AGAIN
MOV  SI,COL1        ; USE SI TO COUNT COLUMNS.

AGAIN:    DRAW_DOT ROW,SI     ; SET THE PIXEL.
INC  SI             ; NEXT COLUMN.
CMP  SI,COL2        ; DONE?
JBE  AGAIN
ENDM

Since the only access to the graphics hardware in this macro is through
the macro DRAW_DOT, this macro is totally hardware independent.

Drawing horizontal (and vertical) lines is rather easy, as we have
just seen.  Drawing a general line between two arbitrarily chosen
points on the screen is somewhat trickier.  Indeed, at first glance, it
may not even be entirely obvious what we mean by a "line" between two
points.  If by a "line" we mean the mathematically precise definition
(the infinitely thin shortest path between two points) there might not
even be any pixels on the screen (other than the endpoints) which are
on the line.  Clearly, however, this is not what we mean -- we mean to
turn on all pixels which, in some sense, are close to being on the
line, so that to the eye we have a good approximation of a straight
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line.  There are actually a number of ways of approaching this problem,
with differing results.  We will choose a rather simple approach.

To see how we might go about drawing such a "line", let us
consider first the case in which we know that the line is nearly
horizontal.  "Nearly horizontal" will mean simply that the line is
spread across more columns of pixels than rows of pixels.  We might
draw the line as follows:  Within each column between the given
endpoints of the line, turn on the pixel vertically closest to the
mathematically correct line.

This approach is conceptually simple, but has the flaw that we do
not immediately see any good way to calculate the indicated pixels.  We
obviously do not care to calculate the distance of each pixel in the
column from the mathematically perfect line.  Indeed, even if we could
narrow the choice of pixels down to just a couple, calculating the
distance of the pixel from the line requires several floating-point
operations -- and since we are probably turning on tens of thousands of
pixels, all of these calculations take a long time.

Fortunately, there is a way of faking all of these floating point
operations with just a couple of word additions on the 8088, although
how the method works requires a little thought to understand.  To
illustrate the algorithm, let us suppose that we want to draw a line
between ROW1,COL1 and ROW2,COL2, where ROW2>ROW1 and COL2>COL1.  Here
is the algorithm in pseudo-code:

DX  := COL2-COL1
DY  := ROW2-ROW1
ROW := ROW1
K   := DX/2
FOR COL := COL1 TO COL2 DO
BEGIN

DRAW_DOT ROW,COL
K := K+DY
IF K>=DX THEN
BEGIN

K := K-DX
ROW := ROW+1

END
END

The key feature of this algorithm is, of course, the running count K.
ROW is incremented every time K surpasses a multiple of DX.  However,
there are DX passes through the loop, and K is incremented by DY each
time, so there are a total of (DX*DY)/DX = DY times that ROW is
incremented.  This is just what we want.

In practice, this algorithm becomes slightly more complex since
the assumptions ROW2>ROW1, COL2>COL1, and DX>DY occur only about 1/8 of
the time.  All of the other possible cases differ only slightly from
this one, however, and it is relatively easy to write a procedure that
handles all possible cases.  Such a procedure is featured on the door
of my office.  To avoid wasting class time, I will simply suppose
(whenever the necessity arises) that there is a machine-independent
macro
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DRAW_LINE ROW1,COL1,ROW2,COL2

which draws a line between the points (ROW1,COL1) and (ROW2,COL2), and
depends only on the hardware-dependent macro DRAW_DOT.

To see how all of these things fit together, let us write a short
program that does the following:  First, it gets into graphics mode,
and with DRAW_LINE puts a box around the screen.  Second, it goes to
the middle of the screen and displays the message "Hello, bunky!"
(recalling that text can be displayed in graphics mode, but not vice-
versa).  Third (and finally), it waits for the user to type any key,
then it gets back into text mode and quits:

N    EQU  NUM_ROWS-1
M    EQU  NUM_COLS-1
MSG  DB   "Hello bunky!",13,10,'$'

...
SM   6
DRAW_LINE 0,0,0,M        ; LINE AT TOP OF SCREEN.
DRAW_LINE 0,M,N,M        ; LINE AT RIGHT.
DRAW_LINE N,M,N,0        ; LINE AT BOTTOM.
DRAW_LINE N,0,0,0        ; LINE AT LEFT.
CUP 13,15                ; GOTO CHARACTER POSITION 13,15.
DISPLAY   MSG
GETCHR
SM   3

Implementing DRAW_DOT Simple-mindedly

On an IBM PC, we can implement DRAW_DOT very simply (and shoddily)
using one of the remaining undiscussed functions of BIOS interrupt 10H.
The relevant function is AH=12, as mentioned in the textbook.

Function AH=12 of interrupt 10H turns on a selected pixel.
Basically, all we need to do is to select the column number, the row
number, and the color of the pixel.  Colors are only available in
320x200 color graphics mode.  In 640x200 graphics mode, all graphics
are black and white.  We will therefore give DRAW_DOT a third argument,
COLOR -- if present, this argument will actually specify the color of
the dot.  If absent, the color white will be assumed.  Similarly,
DRAW_LINE will be given a fifth argument (COLOR) which works the same
way.  The actual choices for COLOR will be discussed later, and until
then the argument will simply be omitted as above.  Here, then, is a
simple-minded implementation of DRAW_DOT using BIOS interrupt 10H:

draw_dot macro row,column,color
mov   dx,row         ; select pixel row for BIOS function.
mov   cx,column      ; select pixel column.
ifb   <color>

mov   al,3        ; if color not selected, use white.
else

mov   al,color    ; otherwise, use the selected color.
endif
mov   ah,12          ; use function AH=12.
int   10H            ; call BIOS.
endm
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The reason this implementation is so poor is the tremendous amount
of time overhead involved.  Recall that the INT instruction is like a
CALL except that it performs some additional functions (therefore
taking longer to do so).  Also, once BIOS takes control, it has its own
internal jump-table to select from among the functions specified by AH.
In all, the overhead associated with using this DRAW_DOT macro is
several times longer than the time required to actually set the pixel.
Indeed, if we run the sample program given in the last section, the
operation is so slow that we can actually see the lines being drawn.

The only way around this problem is for our macro to directly
access the hardware rather than to go through an intermediary like
BIOS.  We will begin discussing this in the next section.  (Actually,
even going directly to the hardware does not totally fix the speed
problem, and in the end we would probably want to introduce both a
hardware-dependent DRAW_DOT and a hardware-dependent DRAW_LINE.  For
now, however, we will not pursue this path.)

Another remaining BIOS 10H graphics function is also slightly
interesting.  Function AH=13 is the inverse of AH=12:  It reads a dot
rather than writing a dot.  That is, it can examine a given pixel
position and determine whether the pixel is on or off.  There is
another, similar, function AH=8, which reads a character position on
the screen and returns the value of the character.

Video Memory

These reading functions are possible because in an IBM PC the
video display behaves very much like a section of memory -- indeed, in
some sense the video display is a section of memory.  This is easiest
to think about (at first) in the case of a text display mode, for the
monochrome display card.  The monochrome display card actually contains
4K of memory, beginning at location B000:0000 in the PC.  This memory
can be accessed by the 8088 just like any other memory in the computer;
however, it serves a special purpose.  This memory, the video memory,
specifies the image on the display.  Now, for a display of 80 columns
by 25 rows of text, 80*25 = 2000 bytes would seemingly be necessary for
specifying all of the information in the display.  Actually, each
character position on the screen is controlled by two bytes rather than
just one.  One of the bytes is the ASCII representation of the
character, as we might have expected.  The other, the attribute byte,
specifies what attributes the character has:  is it blinking?, is it
underlined?, etc.  Thus, 2*2000=4000 bytes are really necessary to give
all of the information in the display.  This 4000 bytes agrees nicely
with the fact that 4K of memory is available on the monochrome card
itself.

Similarly, the IBM color adapter card has 16K memory on board, and
this memory begins at address B800:0000 in the PC.  Since only 4000
bytes are needed for a screenful of text, this leaves room on the card
to store the remaining (normally unused) three display pages discussed
in the previous lecture.

The form of the attribute byte is as follows
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BIT                 DESCRIPTION
0                  foreground bit B
1                  foreground bit G
2                  foreground bit R
3                  I -- intensity (0=low, 1=high)
4                  background bit B
5                  background bit G
6                  background big R
7                  BL -- blink (0=no, 1=yes)

The bits R, G, and B go to together to specify either a property of the
character itself (a "foreground" property) or a property of the
character's background field.  As you may surmise from the "RGB", these
bits are really intended to represent colors; the monochrome card has
only black and white as the allowed colors.  Here is a table of the
allowed colors, when the I=1 (i.e., high intensity) and I=0 (low
intensity):

RGB            COLOR (high intensity)   COLOR (low intensity)
0                  dark gray                black
1                  light blue               blue
2                  light green              green
3                  light cyan               cyan
4                  light red                red
5                  light magenta            magenta
6                  yellow                   brown
7                  white                    light gray

Thus, for the color adapter, a foreground RGB of 3 and a background of
2 would result in a cyan (whatever that is) character on a green
background.  For the monochrome card, only RGBs of 0 and 7 are allowed,
except that a foreground RGB of 1 can be used to display an underlined
character.

This information is really useful only in text mode and (of
course) the ANSI driver (command SGR) can be used to set all of the
mentioned attributes in any desired way.  Nevertheless, we can now see
how video memory is layed out.  The active display page consists of
2000 consecutive words, of which the first (less significant) byte is
the character, and the second (more significant) byte is the attribute.
If we were to directly manipulate this memory with our programs, we
could change the characters and/or attributes anywhere on the screen
without going through BIOS.  Here, for example, is a program which
sticks an "A" in the middle of the screen:

MOV  AX,0B800H           ; PREPARE DISPLAY AS EXTRA SEGMENT.
MOV  ES,AX
MOV  ES:2000,"A"         ; PUT AN "A" AT POSITION 2000.

This little program assumes a color adapter; for a monochrome adapter,
ES should have been set to 0B000H.  To set the attribute byte rather
than the character itself, we would have used address ES:2001.

I won't describe such screen manipulations in text mode any
further because, as I have tried to get across, I don't approve of them
except in the most performance-critical applications.  Direct screen
manipulations are very often not compatible from machine to machine.



IBM-PC ASSEMBLY-LANGUAGE LECTURE NOTES PAGE 311/361

CLASS 17

Unfortunately, as mentioned earlier, because of speed considerations,
direct screen manipulations are often unavoidable in graphics
applications.

In the graphics modes, the memory requirements change and the
video memory is layed out quite differently.  There are three cases.
In 640x200 mode, 640*200=128000 bits or 16000 bytes are needed to
contain the image, corresponding to the 16K memory on the color
adapter.  (Thus, no extra display pages are available.)  In 320x200
black and white mode, just half of this (8000 bytes) is required.  In
320x200 color mode, however, each pixel can have 4 different colors;
each color requires two bits to specify it; so 8000*2=16000 bytes are
again required.  For the sake of brevity, we will cover just the
640x200 mode and the 320x200 color mode.

The 320x200 Color Graphics Mode

To represent a row of pixels in 320x200 color graphics mode, we
need (320 columns)*(2 color bits) = 640 bits = 80 bytes, just the same
as is needed to represent a row of characters.  Indeed, each row of
pixels is, in fact, represented by 80 consecutive bytes in video
memory.  Unfortunately, for some strange reason, the even numbered rows
are in video memory at addresses B800:0000-1FFF, while the odd numbered
rows are in video memory at addresses B800:2000-3FFF.  Thus, row 0
begins at address B800:0000, row 1 begins at B8000:2000, row 2 begins
at B800:0050 (remembering that 80 decimal is 50H), etc.

Things are a little better if we stay within a single row.  Since
each pixel needs two bits to specify its color, each byte in video
memory is divided into 4 2-bit hunks, with each hunk representing a
pixel.  The two most significant bits are the first pixel (moving from
left to right on the screen), the two next most significant bits are
the second pixel, etc.  The two bits themselves represent one of four
colors, but rather than explain the representation of colors now, let
us simply assume that two zero bits give black and two one bits give
white.

As an example, if the memory at B800:0000 looked like 11000011B,
11110011B, 00110011B, etc., then the pixels in the first row of the
screen would be on, off, off, on, on, on, off, on, off, on, off, on,
etc.  Here is an example DRAW_DOT macro taking account of this
arrangement, but ignoring the color parameter:

; MACRO TO SET A PIXEL IN 320X200 MODE.  THE FIRST STEP IS TO LOCATE
; WHICH BYTE IN VIDEO MEMORY CONTAINS THE PIXEL.  THE SECOND STEP IS
; TO FIND OUT WHICH BITS IN THE BYTE REPRESENT THE PIXEL.  THE THIRD
; STEP IS, OF COURSE, TO SET THE PIXEL.
DRAW_DOT MACRO ROW,COLUMN

LOCAL EVEN
PUSH ES
MOV  AX,0B800H
MOV  ES,AX

; FIRST, COMPUTE THE OFFSET OF THE BEGINNING OF THE ROW IN VIDEO MEM.
MOV  BX,0           ; ES:BX IS BEGINNING OF VIDEO MEMORY.
MOV  AX,ROW
SHR  AX,1           ; GET EVEN/ODD BIT INTO CARRY.
JNC  EVEN           ; ROW IS EVEN, SO OKAY.
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MOV  BX,2000H       ; BASE OF ODD ROWS IN VID. MEM.
EVEN:     MOV  CX,80          ; MULTIPLY ROW BY 80.

MUL  CX
ADD  BX,AX          ; NOW ES:BX POINTS TO ROW BEGINNING.

; COMPUTE WHICH BYTE IN THE ROW:
MOV  AX,COLUMN
SHR  AX,1           ; GET RID OF THE COLOR.
SHR  AX,1
ADD  BX,AX          ; ADD ROW-OFFSET TO COL-OFFSET.

; SECOND, COMPUTE NEW COLOR:
MOV  AX,11000000B   ; SHIFT THIS RIGHT BY THE RIGHT
MOV  CX,COLUMN      ; NUMBER OF BITS.
AND  CX,011B
SHL  CX,1
SHR  AX,CL

; THIRD, FIX UP THE BYTE IN VIDEO MEMORY:
OR   ES:[BX],AX     ; SET THE (NOW PROPERLY POSITIONED)
POP  ES             ; BITS IN VIDEO MEMORY.
ENDM

(The complexity of this scheme explains the comment made earlier that a
much faster DRAW_LINE routine could be written if it could directly
access video memory rather than go through this macro.  For example,
the MUL step could be avoided.  Actually, we could conveniently do this
multiplication using only shift instructions, but we will skip that for
now.)

There are several variations of this scheme which are of interest.
One is this:  instead of setting the bits representing the pixel by
ORing them, we could XOR them instead.  What is the meaning of this?
Recall how the OR and XOR operations work:

X         Y         X OR Y         X XOR Y
0         0            0              0
0         1            1              1
1         0            1              1
1         1            1              0

We can summarize this by saying that ORing or XORing anything with zero
leaves it unchanged.  ORing anything with one sets it to one.  XORing
anything with one complements it.  This means, first, that (like the OR
operation) a XOR operation would affect only the bits representing the
pixel.  Second, since most of the screen is generally blank in graphics
applications, the XOR operation would usually set the pixel bits (just
as OR does).  Third, and this is the interesting part, since the XOR
operation is inherently reversible, we can erase any dots or lines we
draw just by redrawing them!  I will make this clear with an example.
Suppose that we want to set the pixel represented by bits 2 and 3 of
the byte 00000000B in video memory.  If we XOR this byte with 00001100B
(i.e., if we use DRAW_DOT written with XOR instead of with OR), the
byte in video memory becomes 00001100B.  If we now repeat this
operation (XORing with 00001100B by using DRAW_DOT), then a glance at
the truth table for XOR given above shows that the byte in video memory
returns to its original form 00000000B.

XORing is not, however, the only way to erase dots and lines from
the display.
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Another way to erase dots from the screen would be to allow the
use of colors other than white in the DRAW_DOT macro above.  The color
white for the dots is hard-coded into the routine by the selection of
AX=11000000B just under the comment "SECOND, COMPUTE NEW COLOR".  If,
instead of ORing with 11B, we provided some means of setting the
appropriate bits in video memory to 00, 01, or 10, then we could use
the other three available colors instead.  (Setting the bits to 00
involves simply ANDing them with zero.  Setting them to 01B or 10B
involves first clearing them by ANDing with 00 and then ORing them with
01B or 10B.)  One of these colors, 00, is black -- thus we could erase
dots by selecting black as the color of the dots.  The difference
between this and the XORing scheme is that XORing returns the color of
the dot to its original color whereas setting the bits to zero simply
makes them black regardless of the original color.

Actually, in calling the colors selected by 00B and 11B "black"
and "white" I have been guilty of an oversimplification.  Since only
two bits are available to specify the color of the pixel, only four
colors may be used on the screen at any one time.  However, there is
considerable latitude in selecting which four colors those are.  For
example, every pixel set to 00B will be the same color wherever it
appears on the screen -- but that color need not be black.  Pixels set
to 00B are painted the so-called "background color".  Recall that we
discussed background colors earlier, when covering the attribute byte.
There, we found out that the I (intensity), R, G, and B bits together
allowed us to select one of 16 colors for the background.  These colors
are numbered 0-15 as computed using IRGB.  (That is, the first column
of our earlier table gives the colors 8-15, and the second column give
the colors 0-7.)  The same situation holds in 320x200 graphics mode:
any IRGB color may be selected as the background color (pixel=00B).

Selection of the other three pixel colors is more limited.  There
are, in fact, only two choices:  "palette 0" and "palette 1":

PALETTE             01B       10B       11B
0               green      red     yellow
1                cyan    magenta    white

(Before we forget it, recall that the BIOS INT 10H function AH=12,
which is used to turn on a pixel, had an argument for selecting the
color of the dot.  At that time, we did not understand colors, so we
didn't discuss this argument further.  Since only four colors are
allowed, the argument must have a value of 1-3 to select the colors
described in the palette table above, and a value of 0 to select the
background color.  In addition, if 128 is added to the value, then the
color is XORed with the pixel.)

The background color and the palette can be chosen by using
another BIOS INT 10H function, the AH=11 (0BH) function.  This function
has two subfunctions.  These subfunctions are chosen by putting a
number into the BH register.  If BH=0, we can select the background
color by specifying its code (IRGB=0-15) in the BL register.  If BH=1,
we can select the palette with BL.  Here are two examples from Jump's
book on DOS:
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; set background color to light red.
mov  ah,11          ; function 11.
mov  bh,0           ; subfunction 0.
mov  bl,12          ; 12=light red.
int  10H            ; BIOS video I/O interrupt.

; set palette to 0.
mov  ah,11          ; function 11.
mov  bh,1           ; subfunction 1.
mov  bl,0           ; palette=0.
int  10H            ; BIOS video I/O interrupt.

In the next lecture, we will discuss the 640x200 graphics mode, as
well as direct programming of the video hardware.
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FINAL PROJECT #2:  INFINITE PRECISION ARITHMETIC

Our normal 8088 arithmetic instructions take arguments of byte or word precision
and return answers of a similar precision.  Such arithmetic operations have the problem
that they can only deal with integers of limited precision and that the operations can
"overflow", giving incorrect answers.  Infinite precision arithmetic, on the other hand,
gets around this problem by allowing the size (in terms of number of bytes) of numbers to
vary.  To do this, we will assume that all numbers consist of an integral number of
words, and the size (in words) of the number must be stored along with the binary
representation of the number.  For example, in normal binary notation the number 3fcH
would be represented by the bytes

FC 03

(recalling that numbers are stored in memory with the least significant byte first and
the most significant byte last).  In infinite precision arithmetic, however, a word count
would also have to be stored along with the representation of the number:

01 00 fc 03

The leading word whose value is 1 indicates that the number consists of one word.  The
number 3fc14569H would be expressed similarly as

02 00 69 45 c1 3f

The word count appended to the beginning of the number is only a word itself, so our
arithmetic cannot actually be infinitely precise.  Indeed, we knew this already from the
fact that the memory (and speed) of the computer is limited.  Rather, numbers can contain
only up to 32K words, or something over 100,000 decimal digits.  The 32K limit comes not
from the fact that the word count is itself a word, but from the fact that a memory
segment can hold only up to 64K bytes or 32K words.

Note that all infinite precision numbers will represent signed numbers (as opposed
to unsigned numbers).

Rules for manipulating infinite precision numbers (that is, for doing the four
elementary operations of +, -, *, and /) can easily be adapted from our earlier
discussions and from the material in chapter 4.  The only difference is that a certain
amount of memory management must also go on, since the sizes of results of the operations
may vary.  To handle this, we will store all infinite precision numbers in buffers with
the following format (which is slightly augmented from the representation suggested
above):

word 0         contains N, the maximum number of words that can be held by the
buffer.

word 1         the actual number of words held by the buffer.
words 2..N+1   the buffer itself, the first part of which contains the binary

representation of the number.

This buffer form is very reminiscent of the buffers used by DOS function 10 to read
strings from the keyboard.  The basic rules for memory management under the four
operations are these:  if N and M are the actual number of words occupied by the two
operands (X and Y, respectively), and if L is the maximum-size parameter of the result
buffer (with the result being called Z), then the minimum allowable value of L is given
by

OPERATION                L
Z=X+Y or Z=X-Y         1+max{N,M}

Z=X*Y                 N+M
Z=X/Y        0 if M>N, otherwise N-M+1

Z=X mod Y             min{N,M}
Z=sqrt(X)           (N+1) div 2

The allocation of these buffers will be the responsibility of a main program which we
ourselves will not write.  We will write procedures (in our normal way, with FAR PUBLIC
PROCs and arguments on the stack) which use such pre-allocated buffers, but which will do
the appropriate error checking (according to the above table) to ensure buffers of the
correct size.

Your assignment, should you choose to accept it, is to do any three of the
following six numbered options:
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1)   Write procedures ADD_INF and SUB_INF which (respectively) perform infinite-
precision addition and subtraction on two operand buffers, giving a third operand
buffer as the result.  Calling sequence for Z=X+Y or Z=X-Y:  PUSH OFFSET X, PUSH
OFFSET Y, PUSH OFFSET Z, CALL ADD_INF or SUB_INF.  The "offsets" referred to are
the offsets of the buffers.

2)   Write a procedure MUL_INF to do infinite precision  multiplication.  The calling
sequence is the same as above.

3)   Write a procedure DIV_INF to do infinite precision division.  This procedure will
return both the quotient and remainder of the division.  To divide X by Y, giving a
quotient Q and remainder R, the calling sequence is PUSH OFFSET X, PUSH OFFSET Y,
PUSH OFFSET Q, PUSH OFFSET R, CALL DIV_INF.  If the actual value of the quotient is
not desired (that is, if only the remainder is of interest), then the maximum-
length parameter of Q should be set to -1 on input.  Similarly, if R is not
desired, then its maximum-length parameter should be set to -1 on input.

4)   Write a procedure INP_INF to read an infinite precision number from the standard
input device.  That is, to read the ASCII decimal digits and to convert them to
number in infinite precision format.  The calling sequence (to get input X) is PUSH
OFFSET X, CALL INP_INF.

5)   Write a procedure OUT_INF to display the ASCII decimal form of an infinite
precision number on the standard output device.  The calling sequence (to display
X) is PUSH OFFSET X, PUSH OFFSET Y, CALL OUT_INF.  The "Y" here is a buffer at
least as large as X which is used as working storage so that OUT_INF does not need
to destroy X as it works.

6)   Write a procedure SQR_INF to take the square root of an infinite precision number.
The calling sequence is PUSH OFFSET X, PUSH OFFSET Z, CALL SQR_INF.  It is also
possible to write a procedure which, like DIV_INF, returns both a square root and a
"remainder" (or, at least, an indication of whether the result was exact or
approximate).  However, you need not do this.

All of the above (except 5) should (on output) adjust the actual-length parameter
of the output buffer(s) to reflect the actual result-size.  The only exception to this is
if an error occurs.  Since the actual-length parameter can vary only from 0 to 32K, the
routines can report errors by returning a negative actual length.  Here are the errors to
be reported:

ERROR CODE               ERROR DESCRIPTION
-1              Bad buffer size.  This indicates that according to the

size rules for results mentioned above, there is not
enough room in the output buffer for the result.  (Be
careful not to report this error for a -1 size
specification in DIV_INF.)

-2              Divide by zero error.
-3              Negative argument of square root.
-4              Illegal input in INP_INF -- the ASCII characters input do

not represent a number.  (Note that this is distinct from
error -1, which can also occur for INP_INF.)

-5              Disk full error on OUT_INF.

As an example of how to use these routines, let us consider code to multiply 10,000
by 1,000,000,000.  Since the first of these numbers (X) is one-word, and the second (Y)
is two words, the result is three words and we could have something like this:

X    DW   1,1            ; PARAMETERS FOR X BUFFER.
DW   10000          ; VALUE FOR X BUFFER.

Y    DW   2,2            ; PARAMETERS FOR Y BUFFER.
DD   1000000000     ; VALUE FOR Y BUFFER.

Z    DW   3,?,3 DUP (?)  ; RESULT BUFFER.
...
MOV  AX,OFFSET X    ; PUSH FIRST ARGUMENT.
PUSH AX
MOV  AX,OFFSET Y    ; PUSH SECOND ARGUMENT.
PUSH AX
MOV  AX,OFFSET Z    ; PUSH LOCATION OF RESULT.
PUSH AX
CALL MUL_INF
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Of course, all of these utilities would in practice be controlled by macros.  In any
case, after this call we would find that Z contained the result (100 trillion).

As with the database project, these functions together form an integrated whole, so
we want every function to be attempted by at least one person.  The only functions which
are (in a sense) dispensible are INP_INF (since the assembler pseudo-ops DW, DD, and DQ
can take its place to a certain extent) and SQR_INF, which may not be used much.
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MODE                DESCRIPTION
0                 40x25 black and white
1                 40x25 color
2                 80x25 black and white
3                 80x25 color
4                 320x200 color
5                 320x200 black and white
6                 640x200 black and white

----------------------------------------------------------------

; MACRO TO DRAW A HORIZONTAL LINE.  BY ASSUMPTION, COL1<COL2.
DRAW_HORIZONTAL MACRO ROW,COL1,COL2

LOCAL AGAIN
MOV  SI,COL1        ; USE SI TO COUNT COLUMNS.

AGAIN:    DRAW_DOT ROW,SI     ; SET THE PIXEL.
INC  SI             ; NEXT COLUMN.
CMP  SI,COL2        ; DONE?
JBE  AGAIN
ENDM

----------------------------------------------------------------

DX  := COL2-COL1
DY  := ROW2-ROW1
ROW := ROW1
K   := DX/2
FOR COL := COL1 TO COL2 DO
BEGIN

DRAW_DOT ROW,COL
K := K+DY
IF K>=DX THEN
BEGIN

K := K-DX
ROW := ROW+1

END
END

----------------------------------------------------------------

N    EQU  NUM_ROWS-1
M    EQU  NUM_COLS-1
MSG  DB   "Hello bunky!",13,10,'$'

...
SM   6
DRAW_LINE 0,0,0,M        ; LINE AT TOP OF SCREEN.
DRAW_LINE 0,M,N,M        ; LINE AT RIGHT.
DRAW_LINE N,M,N,0        ; LINE AT BOTTOM.
DRAW_LINE N,0,0,0        ; LINE AT LEFT.
CUP 13,15                ; GOTO CHARACTER POSITION 13,15.
DISPLAY   MSG
GETCHR
SM   3
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draw_dot macro row,column,color
mov   dx,row         ; select pixel row for BIOS function.
mov   cx,column      ; select pixel column.
ifb   <color>

mov   al,3        ; if color not selected, use white.
else

mov   al,color    ; otherwise, use the selected color.
endif
mov   ah,12          ; use function AH=12.
int   10H            ; call BIOS.
endm

----------------------------------------------------------------

BIT                 DESCRIPTION
0                  foreground bit B
1                  foreground bit G
2                  foreground bit R
3                  I -- intensity (0=low, 1=high)
4                  background bit B
5                  background bit G
6                  background big R
7                  BL -- blink (0=no, 1=yes)

----------------------------------------------------------------

RGB            COLOR (high intensity)   COLOR (low intensity)
0                  dark gray                black
1                  light blue               blue
2                  light green              green
3                  light cyan               cyan
4                  light red                red
5                  light magenta            magenta
6                  yellow                   brown
7                  white                    light gray
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DRAW_DOT MACRO

; MACRO TO SET A PIXEL IN 320X200 MODE.  THE FIRST STEP IS TO LOCATE
; WHICH BYTE IN VIDEO MEMORY CONTAINS THE PIXEL.  THE SECOND STEP IS
; TO FIND OUT WHICH BITS IN THE BYTE REPRESENT THE PIXEL.  THE THIRD
; STEP IS, OF COURSE, TO SET THE PIXEL.
DRAW_DOT MACRO ROW,COLUMN

LOCAL EVEN
PUSH ES
MOV  AX,0B800H
MOV  ES,AX

; FIRST, COMPUTE THE OFFSET OF THE BEGINNING OF THE ROW IN VIDEO MEM.
MOV  BX,0           ; ES:BX IS BEGINNING OF VIDEO MEMORY.
MOV  AX,ROW
SHR  AX,1           ; GET EVEN/ODD BIT INTO CARRY.
JNC  EVEN           ; ROW IS EVEN, SO OKAY.
MOV  BX,2000H       ; BASE OF ODD ROWS IN VID. MEM.

EVEN:     MOV  CX,80          ; MULTIPLY ROW BY 80.
MUL  CX
ADD  BX,AX          ; NOW ES:BX POINTS TO ROW BEGINNING.

; COMPUTE WHICH BYTE IN THE ROW:
MOV  AX,COLUMN
SHR  AX,1           ; GET RID OF THE COLOR.
SHR  AX,1
ADD  BX,AX          ; ADD ROW-OFFSET TO COL-OFFSET.

; SECOND, COMPUTE NEW COLOR:
MOV  AX,11000000B   ; SHIFT THIS RIGHT BY THE RIGHT
MOV  CX,COLUMN      ; NUMBER OF BITS.
AND  CX,011B
SHL  CX,1
SHR  AX,CL

; THIRD, FIX UP THE BYTE IN VIDEO MEMORY:
OR   ES:[BX],AX     ; SET THE (NOW PROPERLY POSITIONED)
POP  ES             ; BITS IN VIDEO MEMORY.
ENDM

---------------------------------------------------------------

PALETTE             01B       10B       11B
0               green      red     yellow
1                cyan    magenta    white
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LECTURE NOTES FOR CS-5330:  IBM PC ASSEMBLY LANGUAGE
UNIVERSITY OF TEXAS AT DALLAS

CLASS 18

Comments

Review

In the previous lecture we began discussing high-resolution
graphics (or, at least, what passes for high-resolution graphics) on
the IBM PC using the standard color adapter board.

We discovered that the computer's display consists of a
rectangular grid of dots known as "pixels".  Normally, the computer is
in "text" mode, capable of displaying 25 rows of 80 characters each
(80x25).  To do high-resolution graphics, however, we must put the
computer into "graphics" mode -- typically 640x200 (black and white) or
320x200 (4 color) mode.  These modes are selected, respectively, by the
ANSI screen driver commands "SM 3", "SM 4", and "SM 6".  Once in
graphics mode, all computer graphics operations can be reduced to
repeated applications of the primitive operation of setting a pixel to
a certain color (such as black or white).  Therefore, we introduced a
macro

DRAW_DOT       ROW,COLUMN [,COLOR]

to perform this operation.  (The COLOR argument, if omitted, defaults
to the lightest available color.)  The dot-setting operation is the
only hardware-dependent operation we need, and all other graphics
operations can then be built out of DRAW_DOTs in a hardware-independent
way.  For example, we saw the hardware-independent macros

DRAW_HORIZONTAL     ROW,COL1,COL2
DRAW_LINE           ROW1,COL1,ROW2,COL2 [,COLOR]

which, resptectively, drew lines from the points (ROW,COL1) to
(ROW,COL2) and from (ROW1,COL1) to (ROW2,COL2).

We also discussed two implementations of the DRAW_DOT macro.  The
first and simplest implementation simply involved a call to the BIOS
interrupt 10H.  One of the 10H functions, the AH=12 function, allows us
to set an arbitrary pixel to a chosen color, which is exactly what we
need.  Unfortunately, there is so much overhead (in terms of execution
time) to execute a BIOS function that the DRAW_LINE macro might execute
unacceptably slowly in many applications.

To overcome this speed problem, we needed a second and more
complex implementation.  This second DRAW_DOT macro needed to directly
access the video display, rather than go through BIOS.  This we were
able to do by accessing the computer's "video memory".  All information
in the image on the screen comes (more or less directly) from a region
of the computer's memory known as the video memory.  For the IBM
monochrome display card, which has 4K of memory on board at address
B000:0000, only text can be displayed.  2000 characters can be shown on
the screen (80*25=2000), and each character has an "attribute byte"
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giving its intensity, whether it is blinking, etc.  Thus, the text
alone uses up the entire video memory for the monochrome board.

The IBM color adapter board has 16K at address B800:0000, and so
can contain 4 text pages.  In graphics mode, however, both the 640x200
mode (=640*200=128000 bits) and the 320x200 color (=320x200x2=128000
bits) use up all available memory on the graphics board.  We have not
yet discussed the 640x200 mode.  In the 320x200 mode, we explored the
relationship between the pixels and the video memory.  Basically, each
row of pixels is specified by 80 consecutive bytes of video memory.
The even numbered rows of pixels are at offsets 0-1FFFH, while the odd
numbered rows are at offsets 2000H-3FFFH.  Each byte specifies the
states of 4 pixels.  Bits 6,7 are the leftmost pixel, bits 4,5 are the
next pixel, bits 2,3 are the next after that, and bits 0,1 are the
rightmost pixel.

The two bits for each pixel represent its color.  If the bits are
00, the color is the "background color".  The other three combinations
are one of three colors from the currently selected "palette".  The
background color and the palette can be selected by the programs, but
they hold throughout the entire screen -- i.e., only four colors can be
displayed at any time, but there is a certain latitude in selecting the
particular four colors to be displayed.  There are 16 possible choices
for the background color and two possible choices for the palette, but
it does not seem necessary to repeat all of the detailed options at
this point.  The background color and the palette are selected using
the AH=11 function of INT 10H.

The 640x200 Graphics Mode

Dot-addressable graphics in the 640x200 mode is very similar to
that in the 320x200 color mode.  In fact, the only difference is that
instead of each byte in video memory representing 4 pixels of 4
possible colors, the bytes represent 8 pixels of 2 possible colors
(i.e., visible and invisible).  Thus, for example, bit 7 of the byte at
address B800:0000 is the dot in the upper left-hand corner of the
screen.  Bit 6 is the dot to the right of that, etc.  Only minor
modifications therefore need to be made to the DRAW_DOT macro developed
in the previous lecture:

; MACRO TO SET A PIXEL IN 640X200 MODE.  THE FIRST STEP IS TO LOCATE
; WHICH BYTE IN VIDEO MEMORY CONTAINS THE PIXEL.  THE SECOND STEP IS
; TO FIND OUT WHICH BITS IN THE BYTE REPRESENT THE PIXEL.  THE THIRD
; STEP IS, OF COURSE, TO SET THE PIXEL.
DRAW_DOT MACRO ROW,COLUMN

LOCAL EVEN
PUSH ES
MOV  AX,0B800H
MOV  ES,AX

; FIRST, COMPUTE THE OFFSET OF THE BEGINNING OF THE ROW IN VIDEO MEM.
MOV  BX,0           ; ES:BX IS BEGINNING OF VIDEO MEMORY.
MOV  AX,ROW
SHR  AX,1           ; GET EVEN/ODD BIT INTO CARRY.
JNC  EVEN           ; ROW IS EVEN, SO OKAY.
MOV  BX,2000H       ; BASE OF ODD ROWS IN VID. MEM.

EVEN:     MOV  CX,80          ; MULTIPLY ROW BY 80.
MUL  CX
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ADD  BX,AX          ; NOW ES:BX POINTS TO ROW BEGINNING.
; COMPUTE WHICH BYTE IN THE ROW:

MOV  AX,COLUMN
SHR  AX,1           ; 8 BITS PER BYTE.
SHR  AX,1

; *************************************************************
SHR  AX,1
ADD  BX,AX          ; ADD ROW-OFFSET TO COL-OFFSET.

; SECOND, COMPUTE NEW COLOR:
MOV  AX,10000000B   ; SHIFT THIS RIGHT BY THE RIGHT
MOV  CX,COLUMN      ; NUMBER OF BITS.
AND  CX,0111B

; *************************************************************
SHR  AX,CL

; THIRD, FIX UP THE BYTE IN VIDEO MEMORY:
OR   ES:[BX],AX     ; SET THE (NOW PROPERLY POSITIONED)
POP  ES             ; BITS IN VIDEO MEMORY.
ENDM

In this macro, the only differences from our 320x200 macro are in three
of the lines in the area delimited by rows of asterisks.  Apparently,
although the documentation on this is rather sleazy, the background
color in 640x200 mode is always black.  However, the foreground color
(the color of the dots) can be selected to be any of the possible 16
colors.  To do this, we use BIOS (as in the previous lecture) and
pretend that we are setting the background color.  That is, we use BIOS
INT 10H, function AH=11, subfunction BH=0.

Fortunately, we need not continue and develop more algorithms for
dot-addressable graphics, since one of our class members is developing
(as a final project) a set of macros for graphics programming.

User-definable Character Sets

I alluded earlier to the fact that with the IBM PC some of the
displayable characters can be programmed so that they assume a
different shape.  The standard ASCII characters cannot be changed in
this way, but the characters in the range 128-255 can be so altered.
Unfortunately, these re-programmed characters can only be seen in
graphics mode and not in text mode (where we would probably want them).
Nevertheless, understanding how 640x200 graphics works, we are now in a
position to understand the programming of the characters.

Here are the various steps involved in using the programmable
character set:

1)   Set up the table of character definitions.

2)   Set the address at interrupt vector 1FH to point to the new
table.

3)   Put the computer in graphics mode.

4)   Use the characters (codes 128-255).

Of course, the normal ASCII characters (0-127) are still available
regardless of whatever changes we make.
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Let us take these steps in order.  First, how do we set up a table
of character definitions?  To define the shape of the character
requires 8 contiguous bytes in memory.  There are 128 user-definable
characters, so (in all) the shape table has 128*8=1024 bytes.  Each of
the bytes of a character definition sets up one row of pixels of the
character.  Thus, each character consists of 8 rows (8 bytes) of 8
columns (8 bits per byte).  As with 640x200 graphics, the leftmost
pixels of the character correspond to bit 7, the next pixel to bit 6,
etc.  To take an example from Jump, here is a definition of the greek
letter pi:

BITS
7    6    5    4    3    2    1    0

0    0    0    0    0    0    0    0    0         = 00H

1    0    1    1    1    1    1    1    0         = 7EH

2    1    0    1    0    0    1    0    0         = A4H

3    0    0    1    0    0    1    0    0         = 24H
BYTE

4    0    0    1    0    0    1    0    0         = 24H

5    0    0    1    0    0    1    0    0         = 24H

6    0    0    1    0    0    1    0    0         = 24H

7    0    0    0    0    0    0    0    0         = 00H

Thus, assuming that we had only this special character to define, our
character definition table might look like:

PI   DB   00H,7EH,0A4H,024H,024H,024H,024H,00H

(Of course, in practice, we would define many more characters than just
this, or else it's not worth the trouble.)

The next step, changing the interrupt vector table so that it
contains the address of the new character shape table, is best
accomplished using a DOS function.  DOS function 25H sets a given
interrupt vector to a desired value.  To use it, we simply set up DS:DX
to contain the new address to be used as the interrupt vector, and load
AL with the interrupt number.  In our case, the new table is probably
already in the data segment, so all we need to do is

; CHANGE INTERRUPT VECTOR 1FH:
MOV  AH,25H              ; DOS SET-INTERRUPT FUNCTION.
MOV  DX,OFFSET PI        ; NEW CHARACTER TABLE ADDRESS.
MOV  AL,1FH              ; CHANGE INTERRUPT VECTOR 1FH.
INT  21H

Here is a short program that combines all of the steps:  it sets
up a new character table containing pi, then goes into graphics mode,
fills the screen with pis, waits for a character to be typed at the
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keyboard, returns to text mode, resets the character table interrupt
vector to the default (0:0), and quits:

I    DW   ?
PI   DB   00H,7EH,0A4H,024H,024H,024H,024H,00H

...
; CHANGE INTERRUPT VECTOR 1FH:

MOV  AH,25H              ; DOS SET-INTERRUPT FUNCTION.
MOV  DX,OFFSET PI        ; NEW CHARACTER TABLE ADDRESS.
MOV  AL,1FH              ; CHANGE INTERRUPT VECTOR 1FH.
INT  21H

; GRAPHICS MODE.
SM   6

; PRINT 2000 PIs:
FOR  I,1,2000

PUTCHR 128
ENDFOR I
GETCHR

; TEXT MODE.
SM   3

; CHANGE INTERRUPT VECTOR 1FH:
MOV  AH,25H              ; DOS SET-INTERRUPT FUNCTION.
PUSH DS
MOV  DX,0                ; NEW CHARACTER TABLE ADDRESS (0:0).
MOV  DS,DX
MOV  AL,1FH              ; CHANGE INTERRUPT VECTOR 1FH.
INT  21H
POP  DS

Direct Programming of the CRT Controller Chip

As it turns out, there are additional (though relatively minor)
features of the video hardware which you cannot access even with BIOS--
but which you can access by directly programming the hardware.

As was mentioned in the very first lecture, the 8088 CPU actually
has two address spaces.  One address space contains the memory, and is
used by almost all of the 8088 instructions.  The other address space
contains the "I/O ports" and is addressed by only a few instructions --
in particular, the IN and OUT instructions.  The I/O address space is
only 64K in size but, like the memory space, contains both bytes and
words.  (However, for the IBM PC, usually only byte I/O is performed.)
Typically, I/O devices are interfaced with the computer in such a way
that the CPU can communicate with them by writing information to
certain I/O ports and reading information from other ports.  This is
not universally true -- the video memory is a counter-example -- but it
is the normal case.

Here is the syntax for the IN and OUT instructions:

IN   accumulator,port         ; GET A BYTE OR WORD FROM THE
; PORT SPECIFIED.

OUT  port,accumulator         ; WRITE A BYTE OR WORD TO THE
; SPECIFIED PORT.

Here, the accumulator is either the AL register (for byte values) or
the AX register (for word values).  The port operand gives the address
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of the I/O port.  This is slightly tricky.  The port operand must be
either an immediate value in the range 0-255, or else it must be the DX
register.  If the port operand is the DX register, then the DX register
holds the address of the port.  Here are some examples:

; WRITE THE BYTE VALUE 77 TO I/O PORT 44:
MOV  AL,77
OUT  44,AL

; WRITE THE BYTE VALUE 88 TO I/O PORT 3E1H:
MOV  AL,88
MOV  DX,3E1H
OUT  DX,AL

; READ WORD VALUE FROM I/O PORT 44:
IN   AX,44

; READ WORD VALUE FROM I/O PORT 3E1H:
MOV  DX,3E1H
IN   AX,DX

As mentioned, however, almost all I/O ports actually used with the IBM
PC are byte ports, so we would always use AL rather than AX with our IN
and OUT instructions.  It is a little inconvenient to continually use
the accumulator and DX registers like this, but we can compensate a
little by introducing some macros to take care of the work:

; MACRO TO WRITE A BYTE VALUE TO A PORT:
OUT_PORT  MACRO     ADDRESS,VALUE

MOV       DX,ADDRESS     ; ADDRESS PORT WITH DX.
MOV       AL,VALUE
OUT       DX,AL
ENDM

Here is a partial list of some of the I/O ports typically used in
an IBM PC, taken mostly from Sargent and Shoemaker, The IBM Personal
Computer from the Inside Out.  All addresses are in hex:

Port Addresses           Used by
0-1F                     8237 4-channel DMA controller
20-3F                    8259 8-channel interrupt controller
40-5F                    8253 3-channel counter/timer circuit
60-7F                    8255 24-line parallel I/O interface
80-9F                    DMA 64K page register
A0-BF                    NMI mask bit latch
C0-C7                    PCjr sound generator
C8-EF                    Reserved
F0-FF                    PCjr floppy diskette interface
100-1FF                  Not usable
200-20F                  Game I/O adapter
210-217                  Expansion unit
220-24F                  Reserved
250-277                  Not used
278-27F                  Second parallel printer interface (LPT2)
280-2EF                  Not used
2F0-2F7                  Reserved
2F8-2FF                  Second serial interface (COM2)
300-31F                  Prototype card
320-32F                  Hard disk
330-377                  Not used
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378-37F                  First parallel printer interface (LPT1)
380-38C                  SDLC or second binary synchronous port
390-39F                  Not used
3A0-3A9                  Primary binary synchronous interface
3B0-3BF                  Monochrome display
3C0-3CF                  Reserved
3D0-3DF                  Color/graphics display adaptor
3E0-3EF                  Reserved
3F0-3F7                  5-1/4" floppy disk drive controller
3F8-3FF                  First serial interface (COM1)

There are many common additions to the PC that use additional ports.
For example, the clock/calendar on the AST 6-Pak Plus card uses ports
2C0-2DF, which are marked "not used" in the table above.

The video display, as you may have surmised from what was said
above, is accessed partly through memory and partly through I/O ports.
Naturally, the video memory itself is entirely contained in memory.
However, there is a hardware device -- the 6845 CRT controller chip (by
Motorola, presumably) -- which can be addressed via I/O ports instead.
The 6845 takes care of most of the electronic and software dirty work
of running the display screen, leaving the PC with the relatively
simple job of merely interfacing with the 6845 rather than controlling
the screen itself.  There are also a few other ports which, while not
connected to the 6845 itself, help to control some features of the
video display.

Although we will not discuss all of these, for the sake of
reference here is a list of the ports used for video I/O:

Video Port               Description
3D4                   Register selection port for the 6845.
3D5                   6845 registers.
3D8                   Display mode control.
3D9                   Color select.
3DA                   Status/Mode I/O
3DB                   Light pen latch CLEAR
3DC                   Light pen latch PRESET

These port-address assignments hold for the color adapter card.  For
the monochrome card, the relevant ports are 3BnH rather than 3DnH.  I
will assume, without warning from now on, that the color adapter card
is being used.  Many of the BIOS 10H functions do little more than
write to these I/O ports, or read from them.  Nevertheless, there are a
few features of the video display that BIOS does not tap.  We will
confine our attention to the two 6845 ports, 3D0H and 3D1H, and to the
status port 3DBH.

The 6845 video controller chip has 19 internal registers, all of
which can be accessed by the PC.  One of these registers, the address
register, is directly available as port 3D4H.  All of the other
registers are located at port 3D5H.  In order to use any 6845 register
other than the address register, it is first necessary to put the its
number (0-17) into the address register, and then to access it with IN
and OUT instructions to port 3D5H.  This will become clearer in a
moment with a programming example.
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The 18 6845 registers other than the address register are referred
to as R0-R17.  Of these, R0-R9 have to do mostly with the electrical
and timing relationships of various parts of the video signal and
should be left alone.  Of the remaining registers, only R10-R15 have
any utility beyond that already provided by BIOS.

R12-R15 provide a more flexible means of controlling the display
page than is given with BIOS.  With BIOS, a display page always begins
at a 4K boundary in video memory, so there are exactly 4 available
pages.  Using R12-R15, however, we can begin a display page at any
address in video memory.  This is very useful not only for paging, but
for scrolling as well.  Normally, we are in page 0 of the display,
which begins at offset 0 in video memory.  If we changed the page to
begin at offset 80 (note that the "addresses" used by the 6845 ignores
the existence of the attribute byte -- thus, the 8088 thinks the page
begins at address 160, but the 6845 thinks it begins at 80), then the
we would have the effect that the screen scrolled upward by one line.
However, this scrolling is extremely fast.  More interestingly, if we
changed the page to begin at offset 1, the display would scroll right
by one character.

Registers R12-R13 hold the more significant byte and the less
significant byte of the address of the beginning of the active display
page.  Here is how we would program the "scroll right" function
mentioned above:

; MACRO TO SEND A BYTE VALUE TO A GIVEN 6845 REGISTER.
OUT_6845  MACRO     REGISTER,VALUE

OUT_PORT  3D4H,REGISTER  ; FIRST, SELECT DESIRED REGISTER.
OUT_PORT  3D5H,VALUE     ; THEN DO THE OUTPUT.
ENDM

; CODE TO PROGRAM THE 6845 PAGE SELECT REGISTERS WITH AN ADDRESS OF
; 1.  R12=MORE SIGNIFICANT BYTE=0, AND R12=LESS SIGNIFICANT BYTE=1.
; THE ADDRESS WHICH THE 6845 THINKS OF AS 1 IS 2 TO THE 8088.

OUT_6845  12,0                ; R12=0.
OUT_6845  13,1                ; R13=1.

Registers R14-R15 give the high and low bytes of the cursor
address, but otherwise they differ from R12-R13 only in that they can
be read as well as written.  To move the cursor to the beginning of the
page we have just selected, we would do something like:

; MOVE CURSOR TO VIDEO-MEMORY LOCATION 1:
OUT_6845  14,0
OUT_6845  15,1

Registers R10-R11 control the cursor size, but give us more
control than the corresponding BIOS function.  With these registers we
can change the cursor shape, but we can also completely eliminate the
cursor.  R10 gives the starting cursor line, and R11 gives the ending
line.  Recall that these lines are numbered from 0-14.  The lowest 5
bits (0-4) of the registers are devoted to specifying the starting and
ending lines, while bits 5 and 6 of R10 are used to control the blink-
rate:
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BIT 5     BIT 6               CURSOR
0         0                 not blinking
0         1                 not displayed
1         0                 fast blink
1         1                 slow blink

For a color display, the cursor normally occupies lines 6 and 7.  Thus,
to keep the cursor the same shape as it normally is, but to turn off
displaying it, we might do this:

OUT_6845  10,0101010B

To make the cursor a non-blinking block, we could do

OUT_6845  10,0000000B

In these examples, the blink rate bits are italicized (bit 7 is
omitted), while the starting line bits are in normal type.  On many
computers (including the IBM PC), the external hardware overrides the
blink-speed control (or non-blink control), so that only options 00 and
01 are valid, with the cursor always blinking if displayed.  Turning
the cursor off can be very useful in using full-screen displays in
which various parts of the screen must be updated quickly, since we
don't have to watch the cursor annoyingly flit across the screen.

The other generally useful I/O port is the status port 3DAH.  To
understand the value of the information available at this port, we must
understand something about the image displayed on the screen.  In the
first place, recall that the image is controlled by the contents of
video memory, and that video memory is accessible to both the 8088 and
to the 6845.  Electrically, it is impossible for both devices to access
the memory simultaneously, yet by the rules of chance this is bound to
happen occasionally since the 8088 and 6845 operate independently and
simultaneously.  When this happens, the 8088 accesses the video memory
and the 6845 is simply denied access.  This means that there are
sometimes brief intervals of time in which the information displayed at
some spot on the screen is incorrect (since the 6845 has been denied
access to video memory).  This can result in an annoying flicker of the
display while the 8088 is directly accessing video memory.  (For
instance, when the IBM color adapter scrolls the display, it completely
rewrites video memory; to avoid the flicker just mentioned, the adapter
turns the entire display off, rewrites the screen, and then turns the
display on again.  This, of course, is hardly less annoying than any
flicker would be.)

However, there are also long intervals of time in which the 6845
is not accessing the video memory at all.  These intervals are the
horizontal and vertical retrace times.  We can think of the display as
being drawn by a tiny pixel-sized cursor.  This cursor starts at the
upper left-hand side of the screen.  First, it moves rightward, drawing
the first row of pixels.  Then, it moves downward and draws the second
line.  When it finally gets to the bottom of the screen, it then moves
back to the top of the screen and starts over.  The time during which
it is moving from the end of one row to the beginning of the next (and
is therefore not reading any pixel values from memory) is the
horizontal retrace time.  The vertical retrace time, of course, occurs
while the cursor is moving from the bottom of the screen to the top.
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Since the 6845 is not accessing the video memory during these times, if
the 8088 could confine its use of the video memory to just these times,
then there would be no flicker.

Port 3DAH is an input port which, among other things, can be used
to determine if a horizontal or vertical retrace is in progress:

BIT 0          is one if either type of retrace is in progress.
BIT 3          is one if a vertical retrace is in progress.

The point of distinguishing between the two types of retraces is that
the vertical retrace takes much longer to complete (about 1.25
milliseconds) than the horizontal retrace (about 10 microseconds) and
therefore more memory accesses can occur during it.  Here is a sample
program which branches, depending on whether a retrace is occurring:

MOV  DX,3DAH   ; GET THE STATUS BYTE.
IN   AL,DX
TEST AL,100B   ; VERTICAL RETRACE?
JNZ  VERTICAL
TEST AL,1      ; HORIZONTAL RETRACE?
JNZ  HORIZONTAL

NORETRACE:

This concludes our in-class discussion of the video hardware.

Introduction to the Serial Port Hardware

If you are not interested in serial communications (or know
nothing about it) you can close your ears at this point.

The IBM PC can be equipped with 0, 1, or 2 serial ports (or more
under some circumstances), which are used to perform serial I/O.  The
serial ports implement the so-called RS-232 standard and can be used to
connect the IBM PC to a large number of external devices like plotters,
some kinds of printers, digitizers, modems, terminals, etc.
Unfortunately, in most instances, using the IBM PC serial ports
requires direct programming of the hardware, since the BIOS is really
not up to the job of generally handling serial I/O.

In the IBM PC, most of the dirty work for serial I/O is handled by
a device known as a UART -- for Universal Asynchronous Receiver
Transmitter.  The particular UART used in an IBM PC is the 8250 single-
chip UART manufactured by Intel.  Like the video display hardware, the
serial I/O hardware has a selection of I/O ports in the 8088's I/O
address space assigned to it.  By the way, we have a slight conflict in
terminology here.  Addresses in the 8088's I/O space are referred to as
"ports"; however, an RS-232 interface is also referred to as a serial
"port".  Hopefully this will not be too confusing.  On an IBM PC, it is
typical to call the first RS-232 interface "COM1", and the second
"COM2".  We will adopt this practice.  Here are the relevant ports:
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I/O Port       Used for                 Description
3F8H          output        a)  transmitter holding register

b)  baud-rate divisor (LSB)
3F8H          input             receiver data register
3F9H          output        a)  interrupt-enable register

b)  baud-rate divisor (MSB)
3FAH          input             interrupt-identification reg.
3FBH          output            line-control register
3FCH          output            modem-control register
3FDH          input             line-status register
3FEH          input             modem-status register

These are the port addresses for COM1, while the port addresses for
COM2 are the same except they are of the form 2FnH rather than 3FnH.

For today, we will ignore the apparent complexities of serial I/O
and concentrate on just the simplest aspects.  Almost all of the ports
in the table above are used for initializing the serial interface.  For
the moment, let us suppose that the serial interface has been correctly
initialized at some previous time, and that we simply want to do some
I/O.

The ports involved in simple I/O are 3F8H and 3FDH.  On output,
register 3F8H is used to output data through the serial interface to
some external device.  In input, it is used to read data sent by the
external device to the serial interface.  In order to determine if the
UART is ready to send more data, or to determine if the UART contains
data that should be read, the status register 3FDH is used.  The status
register is used not only for this, but also to indicate various
transmission or reception errors.  The bits read from the status
register are interpreted as follows:

BIT                 DESCRIPTION
0             =1   if an input byte is ready to read.
1             =1   if you didn't manage to read the character

before it was overwritten by the next one.
2             =1   if there is a parity error.
3             =1   if there is a baud rate error.
4             =1   if a break character has been received.
5             =1   if free to send another character.
6             =1   if all data has been completely transmitted.

Thus, to send a character out through the serial interface, we would do
something like

OUT_PORT  3F8H,character

Similarly, to receive a character, we would do something like

; MACRO TO GET A VALUE FROM A PORT:
IN_PORT   MACRO     VALUE,PORT

MOV       DX,PORT        ; SET UP PORT ADDRESS.
IN        AL,DX          ; GET THE BYTE.
MOV       VALUE,AL       ; AND SAVE IT.
ENDM
...
IN_PORT   character,3F8H
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However, we normally wouldn't do these things without checking the
line-status first to determine if the UART was ready for these
operations.  Thus, we would probably want macros like

; MACRO TO DETERMINE IF THE UART IS READY TO SEND A CHARACTER:  JUMP
; TO THE SPECIFIED ADDRESS IF THE UART IS BUSY.
OUT_STAT  MACRO     NOTREADY

IN_PORT   AL,3FDH        ; GET THE STATUS BYTE.
TEST      AL,32          ; TRANSMITTER HOLDING REG. EMPTY?
JZ        NOTREADY       ; IF NO, JUMP
ENDM

; MACRO TO DETERMINE IF THE UART HAS VALID INPUT TO BE READ.  IF NOT,
; JUMP TO THE SPECIFIED ADDRESS.
IN_STAT   MACRO     NOTREADY

IN_PORT   AL,3FDH        ; GET THE STATUS BYTE.
TEST      AL,1           ; DATA READY?
JZ        NOTREADY       ; IF NO, JUMP
ENDM

As a sample application, let's put all of these ingredients
together to form a "dumb terminal" program.  A dumb terminal is a
device that accepts input from either the keyboard or the RS-232
interface.  Both types of input are displayed on the screen, but input
from the keyboard is sent out over the RS-232 as well.  Here, in
pseudo-code, is the algorithm for a dumb terminal:

REPEAT
IF CHARACTER READY AT KEYBOARD THEN
BEGIN

GET THE CHARACTER FROM THE KEYBOARD
DISPLAY IT ON THE SCREEN
WAIT UNTIL RS-232 IS NOT BUSY
SEND IT OUT OVER THE RS-232

END
IF CHARACTER READY AT RS-232 THEN
BEGIN

GET THE CHARACTER FROM THE RS-232
DISPLAY IT ON THE SCREEN

END
FOREVER

Given the macros we have already developed (and recalling that DOS
function 0BH can be used to check if a keyboard character is ready),
this program is very easy to write:

; KEYBOARD INPUT PART.
KEYBOARD: MOV  AH,0BH         ; CHECK KEYBOARD STATUS

INT  21H            ; BY CALLING DOS.
OR   AL,AL          ; AL=0?
JZ   RS232          ; IF YES, THEN NO CHARACTER IS READY.
GETCHR CL           ; GET A KEYBOARD CHARACTER.
PUTCHR CL           ; DISPLAY IT ON THE SCREEN.

NOTREADY: OUT_STAT NOTREADY   ; WAIT UNTIL RS-232 IS READY TO XMIT.
OUT_PORT 3F8H,CL    ; SEND CHARACTER TO RS-232.
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; RS-232 INPUT PART.
RS232:    IN_STAT KEYBOARD    ; IF NO RS232 CHARACTER, GO BACK TO KBD.

IN_PORT CL,3F8H     ; GET THE RS232 CHARACTER.
PUTCHR  CL          ; DISPLAY IT.
JMP  KEYBOARD

In practice, however, there is much more to setting up the serial
port than I have indicated, as we will see in the next lecture.

REFERENCES:

A very good reference for hardware related topics such as those we
have been discussing is

8088 Assembler Language Programming:  The IBM PC, by David Willen
and Jeffrey Krantz.

This book covers most of the material we have discussed today, but is
particularly good on the subject of serial I/O.  Another reasonably
good general reference with a hardware bias is

The IBM Personal Computer from the Inside Out, by Murray Sargent
and Richard Shoemaker.

For those with a fascination for the hardware alone,

Interfacing to the IBM Personal Computer, by Lewis Eggebrecht

is an interesting reference, particularly if you are designing or
prototyping cards to be used in an IBM PC (or clone).
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This information was given to me by J. Midgley.  I have not tried out this information,
nor do I know its original source.

TI PC BIOS VIDEO I/O INTERRUPT 49H

FUNCTION                      DESCRIPTION

AH= 1H   Set cursor type.  CX=0bb0ssss0000eeee, where bb=blink mode, ssss=start line,
and eeee=end line.

AH= 2H   Set cursor position DH=column (0-79) and DL=row (0-24).
AH= 3H   Read cursor status.  Returns CX and DX (as above?).
AH= 6H   Scroll or move text block.  DX=upper left hand corner of the block.

BX=destination for move.  CH=width.  CL=length.  AL=0 for move.  AL<>0 for
copy.

AH= 8H   Get character at cursor.  AL=character.  AH=attribute.
AH= 9H   Write character and attribute at cursor.  AL=character, BL=attribute.

CX=number of copies of the character to make.
AH=0AH   Write character with same attribute as last time.  AL=character. CX=number of

copies.
AH=0EH   Write character and advance cursor (executing control characters).

AL=character.
 AH=10H   Write block at cursor.  DX:BX(?)=address of block.  CX=length of block.

AL=attribute.
AH=11H   Write block at cursor using attribute latch.  DX:BX(?)=address of block.

CX=length of block.
AH=12H   Change attribute of entire screen to AL.
AH=13H   Clear screen and home cursor.
AH=14H   Clear graphics screen.
AH=15H   Set status region to begin at line CX.  CX must be greater than the cursor

line.  Disable if CX=0.
AH=16H   Set attribute latch to BL=abureGRB.  The attributes are a=alt set, b=blink,

u=underline, r=reverse video, e=enable, GRB=(presumably) the color.
AH=17H   Get offset of first character (on screen?) into DX.  The segment is always

0DE00H.
AH=18H   Print string pointed to by BX.  The first byte of the string must be the

character count.  Advance the cursor and execute control characters as
necessary.

TI VIDEO MEMORY PROGRAMMING (3-PLANE GRAPHICS)

The 720x300 pixels on the screen are each controlled by a three bit number.  The MSB is
in a memory segment starting at C800:0000, the next is in a memory segment starting at
D000:0000, and the LSB is in a memory segment starting at C000:0000.  Three eight-bit
registers map this number to the possible combinations of the three colors that can
appear on the screen.  The green latch is at DF02:0000, the red latch is at DF03:0000,
and the blue latch is at DF01:0000.  For example, if you wished the number 7 to
correspond to yellow on the screen, you would set bit 7 in the green and red latches and
clear bit 7 in the blue latch.  Or, if you wished a blue background, you would set bit 0
in the blue latch (and, of course, clear bit 0 in the others).  The standard setting of
the latches is DF02:0000=F0, DF03:0000=CC, and DF01:0000=AA, because this makes each of
the bits in the control number correspond to Green, Red, and Blue, respectively.

Just as AH=13H INT 49H clears the alpha screen, AH=14H clears the graphics screen.  Or,
you may make graphics vanish by clearing the three latches.  If not cleared or disabled,
graphics and alphanumerics will appear simultaneously.

The three planes of video memory are divided into words.  Each word controls 16 pixels,
with the most significant bit being the leftmost pixel, and the least significant bit the
rightmost pixel.  The first row of pixels is controlled by the words at offsets 0, 2, ...
,88 (decimal), the second row of pixels by 92, 94, ..., 180 (decimal), etc.  Thus, each
row takes 92 bytes, of which 90 are used, giving 90*8=720 pixels per row.  The words of
the very last row on the screen are at offsets 27508, 27510, up to 27596 (decimal).
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CLASS 19

Comments

Review

In the previous lecture we completed our discussion of dot-
addressable graphics and began discussing hardware-oriented
programming.

We discussed the 640x200 black and white graphics display mode,
finding that it differed very little from the 320x200 color mode.

We discussed user-programmable character sets.  Recall that while
the standard ASCII characters simply have fixed appearances, the
characters 128-255 have shapes defined by a "shape table" that can be
altered by our programs.  The steps necessary in defining these
characters were:  a) set up a new shape table; b) change interrupt
vector 1FH to point to the new table; c) get into graphics display mode
(the definable characters only appear in graphics mode); and d) use the
characters.  The shape table was very much like the 640x200 video
memory layout.  Each character consists of 8 bytes (rows) of 8 bits
(columns) each.  Changing the pointer to the shape table is also easy
since there is a DOS function (function 25H) to handle it.

We discussed the IN and OUT instructions, which are used to access
the 8088's "I/O address space" as opposed to its "memory address
space".  In general, most hardware devices are interfaced to the PC by
assigning them I/O addresses (ports) through which they can communicate
with the PC.  We also saw a "map" of the I/O address space giving many
of the port assignments.  Recall that the IN and OUT instructions have
the syntax

IN   accumulator,port
OUT  port,accumulator

where, of course, the accumulator is either AL (the usual case in the
IBM PC) or AX.  The port operand is either an immediate value in the
range 0-255 or else is the DX register (which contains the port address
0-64K).  Because of the necessity of continually using AL and DX in
these instructions, we also introduced macros

IN_PORT   destination,port
OUT_PORT  port,source

in which the port, destination, and source could be given by any of the
usual addressing modes.

We discussed direct programming of the video hardware.  The video
hardware consists of a 6845 CRT controller chip and various supporting
devices.  Programming the video hardware consists of programming the
6845's 19 internal registers, and programming various auxiliary
registers outside of the 6845.  Basically, directly programming the
6845 provides little capability not already inherent in BIOS, except
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that we gain the ability to turn off the cursor, and the ability to
scroll the screen by individual characters rather than by line.  There
was, however, a quite useful auxiliary register, the status register
3DAH (3BAH for the monochrome adapter), that allowed us to tell when
horizontal or vertical retrace was occurring, thus helping us to avoid
priority clashes between the 8088 and 6845 and preventing nasty screen
flicker.

We also began discussing how to program serial I/O.  The serial
I/O hardware consists mainly of an 8250 UART (Universal Asynchronous
Receiver Transmitter), which also does most of the dirty work for us.
Most of the programming work is in initializing the 8250, which we
ignored in the previous class.  We found, however, that the actual I/O
-- i.e. sending bytes out through the UART, or receiving bytes from the
UART -- was quite easy, and we wrote a dumb terminal program to
illustrate that fact.

Initializing the Serial I/O Protocol

Recall that the following port assigments are used for the serial
I/O hardware:

I/O Port       Used for                 Description
3F8H          output        a)  transmitter holding register

b)  baud-rate divisor (LSB)
3F8H          input             receiver data register
3F9H          output        a)  interrupt-enable register

b)  baud-rate divisor (MSB)
3FAH          input             interrupt-identification reg.
3FBH          output            line-control register
3FCH          output            modem-control register
3FDH          input             line-status register
3FEH          input             modem-status register

These are the port addresses for COM1 (the "primary" serial port),
while the port addresses for COM2 (the "secondary" serial port) are the
same except they are of the form 2FnH rather than 3FnH.

Notice that two of the ports, including 3F8H (which we used so
extensively in the previous class), apparently each have two distinct
functions.  These distinct functions are distinguished (much as 6845
registers are selected) by the value written to another I/O port -- the
line-control register 3FBH.  If the value 128 is written to the line-
control register, then functions "b" (baud-rate definition) are
selected.  If bit 7 of the line-control register is zero, functions "a"
are selected.

The "baud rate" (or simply baud if we are being picky) is the
speed (in bits/second) at which data is transmitted.  To the data bits
are appended various other bits, mainly for error-checking purposes.  A
reasonable rule of thumb is that the baud rate must be divided by 10 to
get the transmission rate in bytes/second.  The highest baud rate
available on the PC is 9600 baud, or about 1000 bytes/second.   Not all
baud rates are used.  Some typical baud rates are:  300, 1200, 2400,
9600, and 19200 (though not with a PC).  Normally, the baud rate is set
only during initialization and is then forgotten.  Here are the allowed
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values for the "baud rate divisor" stored in ports 3F8H and 3F9H when
functions "b" are selected:

BAUD RATE              DIVISOR (IN HEX)
50                       900
75                       600

110                       417
134.5                     359
150                       300
300                       180
600                        C0

1200                        60
1800                        40
2000                        3A
2400                        30
3600                        20
4800                        18
7200                        10
9600                         C

There are many more choices here than allowed by BIOS (though most are
useless), and the same holds true of many other serial I/O parameters.
As a simple example of how to set the baud rate, let us suppose that we
want to use 100 baud.  The divisor is 417H, so we have to send the
least significant byte (17H) to one port and the most significant byte
(4H) to another.

OUT_PORT  3FBH,128       ; SELECT FUNCTIONS "B".
OUT_PORT  3F8H,17H       ; LSB OF BAUD DIVISOR.
OUT_PORT  3F9H,4H        ; MSB OF BAUD DIVISOR.
OUT_PORT  3FBH,00000111B ; EXPLAINED BELOW.

(Alternately, we could just put 417H into AX and use a word OUT
instruction rather than a byte OUT; this is one of the few word-I/O
ports in the IBM PC.)  Of course, typically, we would also reset bit 7
of port 3FBH to zero -- otherwise, we couldn't use the primary
functions of these ports:  we couldn't use port 3F8H for inputting or
outputting data.  There is a problem with this in that (other than bit
7) we don't know what value port 3FBH is supposed to have.  (And we
can't use an IN instruction to find out, since the port is read-only.)
The program fragment above uses a very common setting for the line-
control register.

The meaning of the bits in the line-control register 3FBH is as
follows:
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BIT                      MEANING
1,0                 00 = 5 BIT DATA

01 = 6 BIT DATA
10 = 7 BIT DATA
11 - 8 BIT DATA

2                   0 = 1 STOP BIT
1 = 2 STOP BITS (1.5 FOR 5 BIT WORDS)

3                   0 = NO PARITY
1 = PARITY

4                   0 = ODD PARITY
1 = EVEN PARITY

5                   0 = DISABLED (USE THIS ONE!)
1 = STICK PARITY

6                   0 = DISABLED (NORMALLY)
1 = SEND BREAK CHARACTER

7                SELECTS BETWEEN FUNCTIONS A AND B

One common serial I/O protocol uses 8-bit words, two stops, and no
parity which, from an examination of the table above, would result in
the line-control register being set to 00000111B.  This is, by no
coincidence, the value we have used to reset the line-control register
with in the example above.  The protocol mentioned is often found on
computer bulletin boards.  Note, however, that several other protocols
are common.  In general, the correct protocol will have to be
researched individually for every device (including remote mainframes)
connected to the PC.  Mainframes often use protocols featuring 7-bit
data "words", since they transmit only standard ASCII characters, and
these require only 7 bits for their specification.

In general, because most of the serial port features controlled by
the baud-rate divisor and line-control I/O ports (but not implemented
by BIOS) are not useful, there is little reason to directly program
these I/O ports in your programs.  The only common exception is if you
want to send a "break" character to the remote device (which in this
case is presumably a mainframe).  For this, you must use the line-
control I/O port:

; PROGRAM TO SEND A BREAK CHARACTER IF WE ARE USING 8-BIT WORDS,
; TWO STOPS, AND NO PARITY:

OUT_PORT  3FBH,01000111B      ; SEND BREAK.
MOV       CX,DELAYCOUNT       ; PREPARE TO DELAY A CERTAIN TIME.

WAIT: LOOP      WAIT
OUT_PORT  3FBH,00000111B      ; STOP THE BREAK.

Of the other I/O ports that we haven't discussed, two are used to
allow the UART to perform interrupt-driven I/O, while the other three
are used for "handshaking" purposes.

Hardware Handshaking for Serial I/O

The ideas we have discussed so far are all right for mere
transmission and reception of data by means of a serial interface, but
there are many conditions that have not been considered.  Let us
consider, for example, the case in which the IBM PC is being used as a
terminal in order to communicate with a remote mainframe over the
telephone lines.  The remote computer could be ten feet away, or it
could be 3000 miles away, and there are many circumstances that could
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ruin the connection between the two.  This is not especially serious if
a human being is constantly supervising the operation (for instance, if
you are sitting at the IBM PC and watching its screen), but if the
computers are operating unattended it would be best if the PC could
have some better indication of how things are going.

This problem is approached by adding various status signals (i.e.,
extra wires) to the serial interface.  These extra signals are set or
checked by the PC and by the remote device.  Some of the signals are
basically relevant only to devices which are directly connected (with
an RS-232 cable) to the computer.  Others are relevant if the PC and
the remote device are connected via a modem over a telephone line.
(That is, if the PC is connected via RS-232 to a modem, and the modem
connected to the telephone system.  Of course, the modem is itself a
"remote device" which is directly connected to the computer, so the
direct-connect signals could still be relevant.)

The extra wires collectively allow hardware "handshaking".
"Handshaking" is the term for what we have been discussing -- it is the
passing of control and status signals between devices, as well as mere
data.  Hardware handshaking differs from software handshaking in that
the control and status information is sent via wires rather than, for
example, through funny data bytes (such as ASCII control characters).

Here are the extra RS-232 signals:

NAME      I OR O    RELEVANCE           DESCRIPTION
RTS       OUTPUT     DIRECT        REQUEST-TO-SEND -- INFORMS THE

REMOTE DEVICE THAT THE PC WANTS TO
SEND DATA.

CTS       INPUT      DIRECT        CLEAR-TO-SEND -- TELLS THE PC THAT
THE REMOTE DEVICE WILL ACCEPT DATA.

DSR       INPUT      DIRECT        DATA-SET-READY -- TELLS THE PC THAT
THE REMOTE DEVICE IS ACTUALLY
POWERED UP AND CONNECTED.

DTR       OUTPUT     DIRECT        DATA-TERMINAL-READY -- TELLS THE
REMOTE DEVICE THAT THE PC IS POWERED
UP AND CONNECTED.

DCD       INPUT      MODEM         DATA-CARRIER-DETECT -- TELLS THE PC
THAT THE MODEM IS RECEIVING A SIGNAL
OVER THE TELEPHONE LINE.

RI        INPUT      MODEM         RING-INDICATOR -- TELLS THE PC THAT
THE MODEM IS GETTING A RINGING
SIGNAL FROM THE REMOTE TELEPHONE.

The four input signals can all be read from the modem status port 3FEH:

BIT                 MEANING
0             =1 if the CTS signal has changed.
1             =1 if the DSR signal has changed.
2             =1 if the RI signal has changed.
3             =1 if the DCD signal has changed.
4             =1 if the CTS signal is set.
5             =1 if the DSR signal is set.
6             =1 if the RI signal is set.
7             =1 if the DCD signal is set.
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(It can happen, by the way, that some remote devices use the inverses
of these signals -- or use strange combinations of the signals -- to
indicate status conditions we are discussing or for some other kind of
handshaking.  In general, whether this is so must be determined
individually for every device connected to the computer.)

The two output signals of the PC (DTR and RTS) can be set or reset
by the program.  Changing these signals, and various other quantities,
is accomplished by changing the modem-control register, at output port
3FCH.  Bits 0 and 1 of this port are, respectively, used to set DTR and
RTS.  As with the status signals discussed in the previous paragraph,
some remote devices have odd interpretations for these signals.  In
principle, since DTR is used simply to indicate that the PC is present,
it should be so initialized and then forgotten.  RTS, on the other hand
is used to indicate that the PC wants to receive data, and may
therefore change quite often.

Another factor which makes the job of properly programming the
handshaking is that some remote devices require funny cables that
permute the control signals.  However, in theory, here is how the
relevant signals of the computer and the remote device should be
connected:

COMPUTER                      DEVICE
TXD (transmitted data) -----> RXD (received data)
RXD (received data) <------ TXD (transmitted data)

RTS -----------------------> CTS
CTS <----------------------- RTS
DSR <----------------------- DTR
DTR -----------------------> DSR

where the arrows indicate the direction of information flow.

Programming the handshaking will probably be more understandable
with an example.  Let us consider the dumb terminal program discussed
in the last class, and assume that the PC is directly connected to the
remote terminal (with RTS and CTS properly connected) rather than
communicating through the telephone.  Under what circumstances would we
require any kind of handshaking in that program?  Well, the remote
computer might occasionally become busy (changing the CTS being
received by the PC), so we might want to light up a little "busy"
message on the screen.  Similarly, the PC itself might want data input
to stop for a short time.  How could this happen?  Typically, since it
is maddening to sit in front of a computer screen waiting for the
display to be drawn, we always use as high a baud rate as possible.
This is fine for the transmission and reception of ordinary printable
characters since the computer is fast enough to display the character
before the next character arrives.  Some control characters, however,
take a relatively long time to "display":  for instance, a carriage-
return/line-feed might cause the display to scroll.  At 9600 baud, a
new character is being input every 1/1000 second; if (say) it takes
10/1000 second to scroll the screen, up to ten characters could be
lost.  Thus, having received a carriage return character from the
serial port, we might want to manipulate RTS to cause any further input
to stop until the screen is finished scrolling.

Here is the modified pseudocode for our dumb-terminal program:
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REPEAT
IF CTS SAYS REMOTE COMPUTER IS BUSY THEN
BEGIN

SET RTS.
DISPLAY "BUSY" AT SOME DESIGNATED "STATUS" SCREEN LOCATION.
REPEAT (NOTHING) UNTIL CTS SAYS REMOTE COMPUTER IS NOT BUSY.
DISPLAY "    " AT THE "STATUS" LOCATION.
CLEAR RTS.

END.
IF CHARACTER READY AT KEYBOARD THEN
BEGIN

GET THE CHARACTER FROM THE KEYBOARD.
DISPLAY IT ON THE SCREEN.
IF THE CHARACTER IS CARRIAGE RETURN THEN DISPLAY LINE-FEED.
WAIT UNTIL THE UART IS NOT BUSY.
SEND CHARACTER TO THE UART.

END.
IF CHARACTER READY AT RS-232 THEN
BEGIN

GET THE CHARACTER FROM THE UART.
IF NOT A LINE FEED THEN DISPLAY IT
ELSE BEGIN

SET RTS.
DISPLAY THE LINE FEED.
CLEAR RTS.

END.
END.

FOREVER

We have also manipulated RTS to print the "BUSY" message, since all of
that moving around on the screen could take a long time.  This program
could send up to one character to the remote computer after it goes
"BUSY", but before the transition is detected.  This is okay; since
communications is not synchronized (and occurs at a finite speed), the
remote computer has to be prepared for this possibility.

This notion of hardware "handshaking" -- i.e., of connected
devices sending not only data but also status signals to each other --
is very important and comes up for any kind of interface.  For example,
the IBM PC's "parallel port", which is used to connect printers to the
PC but which we have no reason do discuss (since BIOS is just as good),
employs the same ideas.

Before we leave the topic of handshaking, there are two other bits
of the modem control register that should be mentioned.  Bit 3 is
relevant to interrupt-driven I/O as discussed below.  Bit 3 must be one
for interrupt-driven I/O and can be zero otherwise.  Bit 4 is the "loop
back" bit.  If bit 4 is set, the UART internally connects its input to
its output, so that programs can sometimes be tested using this feature
even if a remote device is not attached.  If, for instance, we set bit
4 and then used our simple dumb terminal program from the previous
lecture, every key typed at the keyboard would be echoed twice to the
screen.  The first echo comes from the fact that all keyboard
characters are automatically echoed to the screen by the program; the
second from the fact that the keyboard character is sent out over the
serial interface, but the serial output is looped back to the input, so
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the character is received from the serial port and displayed a second
time by the program.

It should also be noted that in many cases hardware handshaking is
not possible for the simple reason that the connected device is
physically too far away and it would be expensive to use enough wires
to allow hardware handshaking.  In this case, software handshaking is
often used.  In software handshaking, "control characters" sent over
the input and output wires are used to convey the meanings normally
conveyed by the status wires.  One common scheme is to use the ASCII
control characters 0-31, which have standardized meanings in this
regard.  There are too many such control characters to discuss, but two
are noteworthy.  Ctrl-S (or "XOFF"), which we often use to pause the
display in DOS, is typically used as a signal to the remote device to
indicate that it should stop sending data for a while.  Ctrl-Q (or
"XON") is often used after a ctrl-S to tell the remote device to start
sending data again.

Interrupt-driven Serial I/O

Recall that in previous lectures I mentioned that in the IBM PC it
is possible to have interrupt-driven input and output, and that
interrupt-driven I/O is used for the sake of efficiency.  For
interrupt-driven input to the computer, the peripheral device sends an
interrupt signal to the computer whenever it has data it would like to
give to the computer.  This is useful if the input can occur
asynchronously -- i.e., at random times that cannot be predicted by the
computer in advance.  Thus, the computer user can strike a key at the
keyboard at any time and still expect it to be received.  When a
keystroke is received by the computer, the character is stored in a
buffer until such time as the program should call for it.  There is no
reason why other input cannot be handled like this.  For example, there
is no reason why serial input from the RS-232 port cannot be buffered
by an interrupt routine.  This would prevent the computer from either
losing input or else spending all of its time monitoring the peripheral
device for input.

For interrupt-driven output, the computer buffers all of its
output data.  Then, whenever the peripheral device isn't busy, it
interrupts the CPU, and the interrupt routine removes characters from
the buffer (the output queue), giving them to the peripheral device.
This prevents the computer (which operates very quickly) from wasting a
lot of time waiting for the peripheral device (which may be very slow)
to finish outputting the data.  As an example, print spooler programs
work like this.  A print spooler allows the computer to "print" text as
fast as it can (thinking that the output is all going to the printer);
instead, the text is buffered, with the printer periodically
interrupting the computer for new characters.  After all of the text is
in the buffer, the computer can go ahead with the next program -- while
the printer is still printing the previous document.  These ideas also
hold for the serial interface which (even at 9600 baud) is slow by
computer standards.

It should therefore come as no surprise that the serial interface
can be set to interrupt the 8088 under a variety of conditions.  The
interrupts are controlled by the interrupt-enable register (output port
3F9H) and the interrupt-identification register (input port 3FAH).
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There are four different conditions under which the 8250 (the
UART) can be set to interrupt the CPU.  The conditions are these:  1)
the UART has an input character ready for the CPU ; 2) the UART is
ready to get another output character from the CPU; 3) the UART has
detected a reception error or an input "break" character; and 4) the
UART has detected some change in the input CTS, DTR, DCD, or RI
handshaking signals.  Each of these kinds of interrupts can be
selectively enabled or disabled by programming the interrupt-enable
register at port 3F9H.  The interrupts are enabled by, respectively,
setting bits 0-3 of the interrupt-enable register.  Any bit left at
zero disables that particular type of interrupt.  (Also, as mentioned
earlier, bit 3 of the modem-control register must be 1 for any of these
interrupts to have effect.)

If any interrupt signal from COM1 is received by the CPU,
interrupt vector 12 (0CH) is used to activate an interrupt processing
routine.  To determine what type of interrupt it was, the interrupt-
identification register at 3FAH must be read.  Bit 0 of this register
is 0 if an interrupt is pending, and is 1 if no interrupt is pending.
This information is used to determine if several interrupts might have
been received simultaneously.  Thus, after the interrupt-service
routine has done its job, it should then check the interrupt-
identification register again to determine if it needs to service
another interrupt.  Bits 2 and 1 indicate the interrupt type:

TYPE                BITS 2,1  PRIORITY       ACTION TO RESET
ERROR OR BREAK        1 1       FIRST        READ LINE-STATUS
RECEIVED DATA         1 0      SECOND        READ RECEIVED DATA
TRANSMITTER READY     0 1       THIRD        OUTPUT A CHARACTER
MODEM STATUS CHANGED  0 0      FOURTH        READ THE MODEM STATUS

If several interrupt conditions occur simultaneously, only one of them
will be reported, and they will be reported in the order indicated
under "priority".  An interrupt condition is "cleared" by the indicated
action, after which any remaining interrupt conditions should be
processed.

Let's see what a typical interrupt service routine for interrupt
vector 12 might be like:

; INTERRUPT SERVICE ROUTINE FOR COM1.  NOTE THAT ALL REGISTERS MUST
; BE PRESERVED AND THERE MUST BE AN IRET AT THE END:

PUSH      AX
AGAIN:    IN_PORT   AL,3FAH        ; GET INTERRUPT TYPE.

TEST      AL,1           ; INTERRUPT PENDING?
JNZ       DONE           ; IF NO, THEN QUIT.
AND       AL,0110B       ; GET JUST INTERRUPT ID.
JZ        MODEM_STAT     ; MODEM STATUS CHANGED.
CMP       AL,0110B       ; CHARACTER ERROR?
JE        CHAR_ERROR
CMP       AL,0010B       ; XMITTER READY?
JE        XMIT_READY
JMP       CHAR_READY     ; CHARACTER IS READY.

DONE:     POP       AX
IRET
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; CODE FOR THE VARIOUS TYPES OF INTERRUPTS:
MODEM_STAT:
CHAR_ERROR:
XMIT_READY:
CHAR_READY:

JMP       AGAIN

Just what code goes at the final four labels depends on the
application.  If we were using interrupt-driven input, we would
maintain a "circular queue" of received characters.  Recall that a
"queue" is a data struction in which new data is added at one end and
old data is removed at the other.  In our case, the interrupt service
routine 12 would put the characters into the queue, while the executing
program would remove them whenever it wants.  However, a straight queue
would be less than worthless since as data is added to it it would
creep its way, wormlike, up through memory.  Obviously, this wouldn't
be too good.  A circular queue, on the other hand, is similar to a
straight queue except that it has a fixed place in memory.  If we try
to move past the end of it, we go to the beginning of it.  (That's why
it's circular.)  In essence, all addresses in the queue are "modulo"
the queue size.  Such modular arithmetic is especially easy (on a
binary computer) if the queue size is a power of two, which we will
require.  To implement a circular queue we need a buffer to contain the
queue, and we need two pointers into the queue, indicating the next
position to add a character and the next position to remove a
character.  An error condition can occur if many more characters are
added to the queue than are removed, and the character-additon pointer
catches up with the character-delection pointer.  We will arrange to
detect such an error if the additon-pointer is one less than the
deletion-pointer.  With these ideas in mind, here is how we might
implement the CHAR_READY function above:

; CODE TO SET UP A QUEUE OF INPUT CHARACTERS.  FOR MY ALGORITHM, THE
; BUFFER SIZE MUST BE A POWER OF TWO.
BUFSIZE   EQU  1024                ; MAKE THE BUFFER 1024 CHARS. LONG.
BUFFER    DB   BUFSIZE DUP (?)     ; THE QUEUE.
PUTPTR    DW   0                   ; NEXT POSITION TO ADD CHARACTER.
GETPTR    DW   0                   ; NEXT POSITION TO REMOVE CHAR.
ERROR     DB   0                   ; BECOMES ONE IF BUFFER OVERFLOWS.
; NOTE THAT PUTPTR IS UPDATED BY THIS ROUTINE, BUT GETPTR IS UPDATED
; ONLY WHEN A CHARACTER IS REMOVED FROM THE QUEUE -- WHICH THIS
; PROGRAM NEVER DOES.
CHAR_READY:

PUSH      SI
MOV       SI,PUTPTR      ; SET UP A POINTER TO THE BUFFER.
IN_PORT   BUFFER[SI],3F8H
INC       SI             ; MOVE POINTER.
AND       SI,BUFSIZE-1   ; BUFFER IS CIRCULAR.  0 FOLLOWS

; BUFSIZE-1.
MOV       PUTPTR,SI      ; SAVE NEW VALUE OF POINTER.
CMP       SI,GETPTR      ; BUFFER OVERFLOW?
JZ        OVERFLOW
POP       SI
JMP       AGAIN

; THIS CODE IS EXECUTED ONLY FOR A BUFFER OVERFLOW.
OVERFLOW:
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MOV       ERROR,0FFH     ; ERROR CODE.
MOV       SI,GETPTR      ; MOVE GETPTR SO THAT PUTPTR
INC       SI             ; CAN'T GET PAST IT.
AND       SI,BUFSIZE-1   ; MAKE IT CIRCULAR.
MOV       GETPTR,SI      ; SAVE NEW GETPTR.
POP       SI
JMP       AGAIN

Of course, a routine to get a character from the buffer is extremely
simple to write.  Ignoring the possiblity that an overflow error might
have occurred (as indicated by ERROR):

; GET A CHARACTER FROM THE BUFFER INTO AL:
MOV       SI,GETPTR      ; WHERE TO GET THE CHARACTER FROM.
CMP       SI,PUTPTR      ; ANY CHARACTERS?
JZ        NO_CHARS       ; IF NOT, GO DO SOMETHING ELSE.
MOV       AL,BUFFER[SI]  ; GET THE CHARACTER.
INC       SI             ; UPDATE THE POINTER.
AND       SI,BUFSIZE-1   ; MAKE IT CIRCULAR.
MOV       GETPTR,SI

At this point, we will leave the topic of serial I/O, even though
we have barely begun to cover it.  We have spent so much time on it for
several reasons.  First, along with number crunching and high-
resolution graphics, the deficiencies in built-in serial I/O software
probably prompt more actual assembly language programming than any
other area.  Second, information about serial I/O is relatively
difficult to come by and few people appear to understand the topic.
Third, we were forced to consider several topics of great importance
(such as handshaking and interrupt-driven I/O) which we might otherwise
have neglected.

ASSIGNMENT:  Read chapter 8 in the text.

Other Topics:  Sound

While the IBM PC cannot be regarded as a music machine, it is
capable of making a range of tones of selectable durations.  There is
no way (however complex) of controlling the volume of the sound, and
there is no reasonable way of controlling the quality of the sound --
i.e., which harmonics are included in the tone.

Sound is a wave-phenomenon.  Pictorially, we represent a sound as
a wiggly line.  The height of the wiggles represents the volume of the
sound.  The number of wiggles per unit distance along the wiggly line
is the pitch or frequency of the sound.  What distinguishes two sounds
of the same pitch is the shape of the wiggles.  Thus, a violin sounds
different from a trumpet, even if the two are playing notes of
essentially the same pitch.  As mentioned, with the PC there is no way
to change the height (volume) of the wiggles, and there is no way to
change the shape of the wiggles.

The PC tries to produce sound as a "square wave".  That is,
instead of smooth oscillations like gentle waves on water, it produces
sound like this:
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high _________             ______________            _____________
|         |           |              |          |             |
|         |           |              |          |             |

____|         |___________|              |__________|             |__
low

It turns out that, physically, the speaker which actually ends up
producing the sound is not capable of reproducing a square wave, so
that the speaker ends up rounding off the sharp corners of the wave.
Nevertheless, your program really has control over only two aspects of
the sound -- how long the sound wave remains in the "high" part of the
cycle, and how long it remains in the "low" part of the cycle.
Together, these two characteristics allow you to control the pitch and,
minimally, the quality of the sound.

The PC hardware allows you to either:  a) select the frequency of
the sound and just go ahead and play it while your program does other
things; or b) control the high/low durations of each sound-cycle
individually.  The latter is more flexible, but (given the ease of use
of the former option, and the poor quality of the PC as a sound
instrument) the former option is probably preferable in most
circumstances.

Since this topic is covered rather well (and concisely) by the
reading assignment, and since no interesting new principles are
illustrated in it, I do not see any particular reason to go beyond
these remarks.  Please feel free to have fun with it on your own.
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Comments

1.  For anybody who is interested, I have prepared a slide comparing
the results of the mid-term sorting competition.  The slide compares
just the speed of the sorting procedures and not the I/O.  Included on
the slide is everyone who turned in a routine compatible enough that I
could force it into the form I had specified in the problem handout.
The procedures are labeled by the last four digits of the social
security number of the author, except my procedures (which are all
adapted from Sedgewick's book Algorithms) and the SORT procedure
provided with DOS.  These results are in accordance with what could
have been predicted by examination of the handout on sorting methods.
Quicksort is the clear winner, and Bubble Sort the clear loser.  DOS
trails even Bubble Sort by a factor of three.  Presumably, DOS actually
uses a Bubble Sort, and the factor of three is due to the fact that DOS
compares capitalized strings rather than strings in ASCII order.

Review

Most of the previous class was taken up by a cursory examination
of serial I/O techniques.

We learned that several of the I/O ports used for serial I/O
actually have two distinct functions.  These functions are selected by
writing either a 0 or a 1 to bit 7 of the line-control register at port
3FBH.  Normally, bit 7 is 0, but for initialization bit 7 can be set to
1 -- in which case ports 3F8H and 3F9H are used to control the baud
rate of the serial interface.  Many different baud rates (including all
of the usual ones) from 50 to 9600 baud are available.

The line-control register is also used to initialize various other
parameters of the serial interface:  the word-length, the number of
stop bits, the parity, etc.  Also, bit 6 of the line-control register
is used to send a "break" character.

We discussed the handshaking signals available on the RS-232
interface -- these include RTS, CTS, DSR, DTR, DCD, and RI.  We
discussed both the normal interpretation of these signals, as well as
how to program them.  CTS, DSR, RI, and DCD are status (input) signals
that can be read from the modem-status port 3FEH.  The modem-status
port tells both the state of the signal and whether it has changed
since last read.  DTR and RTS are control (output) signals which can be
set or reset by writing to the modem-control register 3FCH.  In
addition, this register can also be used to "loop back" the UART's
output to its input.

We discussed how the RTS and CTS signals are used to stop
communications when the computer or the remote device are busy.  We
also saw the pseudo-code for an extension of our dumb-terminal program
to include such handshaking.
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We discussed interrupt-driven serial I/O.  The UART can interrupt
the CPU under four different conditions:  transmitter empty, receiver
full, reception error, or change in the status signals CTS, DSR, RI,
and DCD.  Whether or not any of these conditions actually interrupts
the 8088 depends on how four bits are set in the interrupt-enable
register at port 3F9H.  If an interrupt occurs, it is always the same
interrupt 12 (0CH).  For the interrupt service routine to determine
which condition caused the interrupt, the interrupt-ID register at port
3FAH is examined.

Interrupt-driven I/O can be used to eliminate CPU waiting for
either slow input devices or slow output devices (with fast and slow
being relative to the speed of the 8088).  In either case, a "circular
queue" is set up to hold the data.  For interrupt-driven input, the
interrupt service routine puts bytes in the queue, and the program
removes them when needed.  For interrupt-driven output, the program
puts the data in the queue, and the interrupt service routine removes
them whenever it is idle.

We also briefly discussed the sound-producing possibilities of the
PC.  We found that the PC basically produces "square wave" sound and
that our only choice is the frequency (pitch) of the sound.  However,
the treatment of this topic was mainly left to the reading assignment.

What Else?

Since this is the last lecture, it is probably reasonable to
mention some of the topics that we have not covered so far.

1.  First, it should be recognized that even the topics we have spent
some time on have been covered only sketchily.  A number of 8088
instructions and a number of the features of the 8087 have not been
covered.  Many advanced (and elementary) features of MS-DOS have not
even been mentioned.  All of the hardware topics discussed have merely
been skimmed.

2.  We have had the chance only to discuss a little about printing
hardcopy.  In many ways, programming printers is as intricate a task as
programming screen displays.  Indeed, many printers are intelligent
(they contain respectible processors) and have many more features than
CRT displays.  At the very least, most modern dot-matrix printers have
dot-addressable graphics and programmable character sets.
Unfortunately, the range of printers commonly used with IBM PCs is so
great that even the sleaziest discussion of them is inappropriate.  The
"standard" IBM printer is related to the MX-80 printer manufactured by
Epson, but even here there are so many variations that I am at a loss
to cover any reasonable subset of the subject.

3.  We have not at all discussed direct disk operations.  Indeed, there
are several layers of disk operations that we haven't discussed.  We
have discussed only MS-DOS disk operations at the file level.  There
are both higher levels and lower levels than this.  MS-DOS groups files
together into directories (and sub-directories) which can be
manipulated to a certain extent.  This is the higher level we haven't
discussed.  At the lower levels, we have not at all discussed how MS-
DOS actually stores files on disks.  Physically, disks have concentric
"tracks" or "cylinders", which are divided into "sectors".  Information
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on the disk is stored in the sectors -- this includes files,
directories, the operating system, etc.  MS-DOS has a reasonably
complicated scheme for calculating how sectors are grouped together to
form files.  We have not discussed the DOS or BIOS functions for
reading or writing chosen sectors on the disk, and have limited
ourselves to accessing entire files.  Programming at this level is
necessary to "fix" a disk which has somehow been messed up.  Nor have
we discussed a level even lower than this:  directly programming the
disk I/O hardware rather than relying on BIOS.  Such programming is
necessary if, for example, we are interested in copy-protection
schemes.

4.  We have not discussed installable device drivers.  Installable
device drivers are possibly the most significant aspect of MS-DOS.
Recall that not only files but also i/o devices have "filenames" by
which they can be accessed.  An installable device driver sets up a new
device name (of your choice) with a function of your choice, which can
then be used in a totally uniform way under any programming language
and many utilities.  This concept has far wider application than it
might seem.  It applies not only to real I/O devices for which there is
actually a chunk of hardware, but for "virtual" devices like print
spoolers and RAM-disks.  Indeed, it can be applied to almost any
function performed by the computer.  As an example, consider the ANSI
installable screen driver.  In many programs, in many languages, one
would like to be able to move the cursor around on the screen at will.
However, the capabilities differ from programming language to
programming language.  Because of the ANSI driver there is a uniform
interface and level of competence across all programming environments.
Let's consider a more severe (real life) example.  Suppose that we were
to add a "speech card" to the PC, so that the PC could produce
intelligle English speech.  Consider a very likely case:  to get the
card to work (so we can play with it), we try to control it using a
BASIC program.  That is, we write a "device driver" routine in BASIC.
This is great, because we are now in the fortunate position of being
able to add speech to all of our BASIC programs.  Now, on the other
hand, suppose that tomorrow we wanted to make the device speak from
Pascal instead of from BASIC.  What could we do?  Well, we could
completely rewrite our BASIC "device driver" in Pascal -- more likely,
we would just skip it altogether and use BASIC.  Of course, the latter
course isn't possible if we are simultaneously trying to use two
devices, one controlled by BASIC and one controlled by Pascal.  Or, if
we were trying to give it to a friend who loved Pascal and hated BASIC.
Or, if we were doing this on the job and it needed to be in Pascal for
a good reason.  Or, if we suddenly discovered the thing was so great
that we could sell it and make money ....   If, instead, we had been
clever enough to write an installable device driver (called, say,
VOICE) to control the speech board, then we could immediately make
speech from either BASIC or Pascal, merely by accessing the "file"
VOICE.

5.  We have not discussed interfacing our assembly language programs to
higher-level languages -- for instance, how to write an assembly-
language SUBROUTINE for use in a FORTRAN program.

6.  And so forth ....
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Clearly, we have only a limited amount of time.  Therefore, today
I would just like to discuss a little about interfacing with higher-
level languages (item 5).  We will relegate the rest of the stuff to a
pile marked "might have been", and think nostalgically about it.

The LDS and LES Instructions

Two 8088 instructions which we will get a lot of use out of in a
moment are the LDS and LES instructions.  These instructions load a
doubleword pointer into a pair of CPU registers.  The syntax of these
instructions is

mnemonic  register,source

Here, of course, the mnemonic is either LDS or LES.  The register
operand is any of:  AX-DX, SI, DI, BP, or SP, although only SI, DI, and
BX are of real use.  The source operand is a doubleword variable in
memory.

The value of these instructions is that if the source operand
contains a segment:offset pair, then the offset will be loaded into the
specified general register, while the segment will be loaded into the
DS register (for LDS) or the ES register (for LES).  Thus, these
instructions can offer a quick way to set up (for example) DS:SI,
DS:DI, ..., ES:BX to point at some desired variable in memory.

As an example, let us consider a case somewhat like our sorting
project, in which we maintain an array of doubleword pointers to
strings rather than word pointers:

STRING1   DB   14,"I AM A STRING"
STRING2   DB   19,"I AM ANOTHER STRING"
STRING3   DB   4,"ETC."

...
POINTERS  DD   STRING1

DD   STRING2
DD   STRING3
...

Hence, at POINTERS is the doubleword address of string 1, at POINTERS+4
is the doubleword address of string 2, etc.  To load ES:DI with the
address of string 2, we could do something like

LES  DI,POINTERS+4

or something like

MOV  SI,4
LES  DI,POINTERS[SI]

Thus, to set up ES:DI and DS:SI for a comparison of string 2 and string
3, we might do something like

MOV  BX,4
LES  DI,POINTERS[BX]
MOV  BX,8
LDS  SI,POINTERS[BX]
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Note that we could not load DS:SI and then ES:DI since POINTERS is in
the data segment and by the time LES is executed the DS register would
have been destroyed and the POINTERS array would therefore be located
incorrectly.  Below, we will see applications in which the doubleword
addresses are variables on the stack, so this comment would not apply.

Interfacing to Higher-level Languages

**********************************************************************
NOTE:  The information in this section is abstracted from the following
sources:

Microsoft FORTRAN Compiler User's Guide, Chapter 9, by Microsoft.

Turbo Pascal 3.0 Reference Manual, pp. 210-211, pp. 216-219, and pp.
221-226 by Borland International.

The IBM Personal Computer from the Inside Out, section 4-5, by Sargent
and Shoemaker.  (Discusses compiled and interpreted BASIC and Microsoft
FORTRAN and Pascal.)

Organization and Assembly Language Programming, Chapter 11, by
Franklin.  (Discusses BASICA and Microsoft FORTRAN and Pascal.)

Inside the IBM PC, Appendix 3, by Norton.  (Discusses Microsoft
Pascal.)

8087:  Applications and Programming for the IBM PC and Other PCs,
Chapter 8, by Starz.  (Discusses compiled and interpreted BASIC.)

I have not personally used any of this information except for that
pertaining to FORTRAN and Turbo Pascal, so I cannot vouch for its
general correctness or completeness.
********************************************************************

In general, our macros BEGIN, VAR, and RETURN implement sort of a
generalized high-level language interface, although they won't work
without modification for most specific languages.  Real languages
usually differ from our interface specification, though the exact way
they differ varies from language to language.  Real interfaces can
differ from ours in basically three ways:

1)   Procedures might be NEAR (we always make them FAR).

2)   We have typically passed the values of byte or word variables
and the addresses of all other variables (such as arrays) as
arguments to procedures.  Some languages choose differently
between "value arguments" and "variable arguments".

3)   For "variable arguments" of procedures (i.e., arguments whose
addresses are passed), we have always used the offsets as the
addresses.  Some languages require both segments and offsets.

These possibilities can mostly be taken care of by fixing up the BEGIN,
VAR, and RETURN macros for whatever language is being used, plus some
changes in the way we use the macros.  Before seeing any explicit
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examples of how to do this, let's see what various languages require in
terms of interfacing.  First there are some (apparently) universal
requirements:  all languages require that BP and the segment registers
(ES, DS, SS) be preserved by the assembly language routine.  Also, the
assembly language routine must POP all arguments from the stack on
return (except where explicitly stated below).  Apparently, it is also
usual to declare the code segment as

CODE      SEGMENT   'CODE'

although I not yet seen any statements to the effect that this is
necessary.

We will discuss the specific requirements of the following
languages:  Microsoft FORTRAN and Pascal, Turbo Pascal, BASICA (but
only briefly), and Compiled BASIC.  Unfortunately, I have no
information on the interfacing requirements of any C compiler.  Indeed,
I do not pretend exhaustive coverage even of the few languages
discussed.  Later, we will see some programming examples of the
information given below:

MICROSOFT FORTRAN.  All FORTRAN CALLs are FAR, as ours are.  All
arguments, however, are variable parameters -- they are the
addresses of the values rather than the values themselves.
Furthermore, they are all doubleword addresses.  Thus, after a
statement like CALL SORT(A,N), the stack would look like

(BOTTOM OF STACK)
...
SEGMENT OF A
OFFSET OF A
SEGMENT OF N
OFFSET OF N
SEGMENT OF RETURN ADDRESS

SP =>  OFFSET OF RETURN ADDRESS

With an arrangement like this, the LDS and LES instructions are
very useful in loading the addresses of the arguments into
registers.
Functions:  FUNCTIONs as well as SUBROUTINEs can be written in
assembly language.  If the returned value is a word (INTEGER*2 or
LOGICAL), it is returned in the AX register.  If the returned
value is INTEGER*4 or LOGICAL*4, it is returned in the DX:AX
register pair.  Any REAL or COMPLEX result is returned in a
temporary (not TEMPORARY REAL) variable created by the compiler.
The address of this temporary variable is pushed onto the stack
after all of the parameters.  (In the above example, if SORT was a
REAL function, the address of the result would be on the stack
between OFFSET N and the segment of the return address.)
Declaration:  No special declaration of the assembly language
procedure is required in the FORTRAN program.  (I.e., the EXTERNAL
declaration is not required.)
Data Types:  a) The CHARACTER*n type is simply an array of n
bytes; b) the REAL type is the IEEE format (same as 8087) for
FORTRAN versions 3.0 and later, but is the Microsoft format for
earlier versions.  The Microsoft real number format is not
compatible with the 8087.
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Segments:  If you want to use local variables in the data segment
instead of the stack, you must declare the data segment as
follows:

DATA      SEGMENT   PUBLIC 'DATA'
;    ...  (DATA GOES HERE)  ...
DATA      ENDS
DGROUP    GROUP     DATA

ASSUME    DS:DGROUP

MICROSOFT PASCAL.  These procedures are also FAR.  The way arguments
are passed is more flexible than in FORTRAN, however.  Value
parameters -- i.e., those without the "VAR" specifier in the
PROCEDURE -- are passed by value, and variable parameters are
passed by address.  Variable parameters using VAR have only the
offsets of the addresses on the stack, while those using the
alternate form VARS have both the segment and the offset on the
stack.
Functions:  Pascal FUNCTIONs as well as PROCEDUREs can be written
in assembler.  Single byte results (BYTE or SINT) are returned in
the AL register and word results (WORD or INTEGER) are returned in
AX.  I do not know how other data types are passed, but I assume
it is by a mechanism similar to FORTRAN's, since the two compilers
are so similar.
Declaration:  Pascal requires each assembly language procedure to
be explicitly declared in the main program, using the reserved
word EXTERNAL.  For example, for our sorting project, we would
have to put the line

PROCEDURE SORT_ARRAY(N:INTEGER; VAR A: ...); EXTERNAL;

(Apparently, EXTERN can also be used rather than EXTERNAL.)  The
type specification after A has been left blank since it depends
how A has been declared.  This particular declaration actually
works immediately with our sorting procedure since it calls for an
integer passed by value and an array passed by offset.  On the
other hand, using "VARS N:INTEGER; VARS A" would produce a CALL
identical to FORTRAN's.
Data Types:  The LSTRING data type consists of a one-byte count of
the number of characters in the string, followed by the string
itself.  LSTRING parameters (arguments) are passed to the assembly
language program in a funny way.  First, the maximum allowed
length of the string is pushed onto the stack, then the address of
the string (assuming a VAR or VARS is used) is pushed.  Thus, a
VAR LSTRING parameter takes 4 bytes on the stack rather than two.

BASICA AND COMPILED BASIC.  Through sheer chance, BASIC's calling
conventions agree perfectly with ours.  That is, our BEGIN, VAR,
and RETURN macros work perfectly as is.  Assembly language
routines for interpreted BASIC should be dynamically relocatable,
which is to say that it should be possible to put them in any
segment (though not necessarily any offset in the segment).  The
easiest way to achieve this is to avoid having any separate data,
stack, or extra segment for the routine.  On the other hand,
another thing to keep in mind is that BASIC only guarantees a
stack of 8 words when your assembler routine is run (although
apparently it is often larger).  Thus, it may be necessary to set
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up your own stack, which is a direct contradiction of the advice
given above.
Declaration:  In compiled BASIC, no special declaration of the
assembler routine is required; the routine is called with a CALL
statement.  In interpreted BASIC, however, a number of additional
steps are necessary.  Since interpreted BASIC is not LINKed, the
assembler routine must be both assembled and LINKed separately.
Also, special techniques must be employed to get the assembler
routine into memory for BASIC to access, as well as to get BASIC
to recognize the routine.  I have seen at least three separate
methods for doing this, each of which is too complicated for
someone who has not used them to usefully describe.  I recommend
consulting the IBM BASIC manual, or the references I have given
above, if you want to interface to interpreted BASIC.
Data Types:  Strings are handled differently in compiled and
interpreted BASIC.  In interpreted BASIC, passing a string
parameter to an assembler routine causes the address of a 3-byte
string descriptor to be placed on the stack.  The string
descriptor, in turn, consists of a one-byte character count and a
two-byte address (pointing to the actual string).  In compiled
BASIC, the situation is the same except that the string descriptor
consists of a 2-byte character count and a 2-byte address.  (What
fun, eh?)

TURBO PASCAL.  Even though Turbo Pascal does not use LINK, it is still
easy to interface it to assembler programs.  All assembler
procedures are NEAR (rather than FAR, as we have always found so
far), and either the values of parameters or the addresses are
passed, depending on whether the VAR declaration is used.  If VAR
is used, doubleword addresses are passed on the stack.  (Thus, VAR
is equivalent to the Microsoft Pascal VARS.)
Functions:  Pascal FUNCTIONs as well as PROCEDUREs can be written
in assembler.  Function calls push an additional parameter onto
the stack to hold the result of the function; however,
BOOLEAN,BYTE, INTEGER, and pointer results are actually returned
in registers and this extra parameter must be POPped by the
routine.  Thus, an integer function SORT(VAR I:INTEGER; J:INTEGER)
would set up the stack like

(BOTTOM OF STACK)
...
VALUE OF SORT RESULT
SEGMENT OF I
OFFSET OF I
VALUE OF J

SP =>  OFFSET OF RETURN ADDRESS

As mentioned, the function value parameter on the stack is used to
return a result only if the data type is bigger than a word.
INTEGER results are returned in AX.  BYTEs (and CHARs) are
returned in AL with AH=0.  BOOLEANs return with the ZF flag set if
false and ZF cleared if true.  Pointer values are returned in
DX:AX.
Declaration:  Since the assembler routines are not LINKed, the
name of the routine need not be declared PUBLIC (though it doesn't
hurt to do so).  The assembler routine must be assembled, linked,
and then turned into a "binary" file by the program EXE2BIN.
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Assuming, for example, that we had started with a program named
"SORT.ASM", this would finally result in a file "SORT.BIN".  The
assembler routine must be declared (assuming the example used
above) in the Pascal calling program as

FUNCTION SORT(VAR I:INTEGER; J:INTEGER):INTEGER; EXTERNAL 'SORT.BIN';

This differs from the Microsoft Pascal declaration in that the
name of the file is also included.  This is done because the
compiler will load SORT.BIN at compile time and therefore needs to
be told where to find it.  There is a disadvantage to this in that
there is no way of knowing where in the code segment the assembler
routine will be loaded.  (Remember, it is a NEAR routine, so the
CS register does not point directly to it when the procedure is
called.)  Therefore, the assembler routine must be completely
relocatable.  In such a routine, therefore, you must not use CALLs
(since there is no way to know the location of called routines),
or use NEAR jumps (since there is no way to know the offsets to
jump to), or use your own data, stack, or extra segments (since
you couldn't know where they are in memory).  This is not a real
hardship in many cases since you can still use conditional jumps,
LOOPs, and SHORT jumps.  However, it does make jump-tables rather
difficult to implement.  Also, if you are using many of our
macros, it necessitates changing them so that they use only the
normal conditional jumps rather than the "improved" JP form.
Data Types:  a) the format of REALs depends on the version of
Turbo Pascal being used.  Currently, there is a version which does
software floating point (using a 6-byte format), a version which
uses 8087 double-precision format, and a version using a 10-byte
BCD format (not compatible with any 8087 format).  b) Strings are
stored with the first byte being a character count and all
remaining bytes constituting the string itself.  c) A pointer is a
doubleword segment:offset pair.
Segments:  As mentioned, you should not set up your own segments.
The DS register points to a segment containing all of the global
variables of the Pascal program.  The first variable declared is
put at the top of the segment.  The second is immediately below
it, the third is below that, etc.  However, unless you can
determine the offset of the top of the segment (which is less than
0FFFFH unless 64K of variables are defined), this information is
not a lot of use.

In presenting programming examples for the information given
above, I will concentrate on Microsoft FORTRAN and Turbo Pascal since
these are what I am familiar with.  (Also, given the low price and
quality of Turbo Pascal, it is irrational to program in any other
traditional higher-level language -- but we won't get into that.)  As
noted above, however, it is possible to declare a Microsoft Pascal
procedure in such a way that a call identical to that of Microsoft
FORTRAN is produced, so any FORTRAN-callable SUBROUTINE produced can be
called from Microsoft Pascal as well (so long as compatible data types
are used).

As an example, let us suppose that we are working on a machine
equipped with an 8087 coprocessor and we would like to speed up our
number-crunching a little.  In particular, we would like to have an
assembler routine to compute the dot-product of two vectors.  Recall
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that the dot-product is given by multiplying the corresponding element
of the two vector and then adding up all of the products.  In FORTRAN,
a routine to do this would look like this:

SUBROUTINE DOTPRO(ARRAY1,ARRAY2,N,RESULT)
DOUBLE PRECISION RESULT,ARRAY1(N),ARRAY2(N)
RESULT=0.0D0
DO 10 I=1,N

10     RESULT=RESULT+ARRAY1(I)*ARRAY2(I)
RETURN
END

We have used DOUBLE PRECISION here because FORTRAN double precision is
identical to Turbo Pascal's REAL data type if an 8087 is being used,
and we would like to minimize our work.

Unfortunately, it is impossible to write a single assembler
routine which can work for both Microsoft FORTRAN and Turbo Pascal
(unless we get very tricky) since FORTRAN SUBROUTINEs are FAR PROCs and
Turbo PROCEDUREs are NEAR PROCs.  However, we can still write an
assembler routine which requires only minimal changes to work with
either language.  We can put a constant into our assembler routine
(using EQU) to indicate which language interface is desired, and we can
use conditional assembly pseudo-ops in conjunction with this constant
to assemble slightly different code in the two cases.  Of course, the
more compatible the language interfaces, the more similar the assembled
code.  [This is a very desirable way to write our procedure since it
quite often happens that the mere existence of a useful routine that
interfaces to a certain language forces us to stick to that language
forever -- no matter how horrible and obsolete it becomes.  Witness (or
witless) the vast commercial, government, and scientific commitment to
COBOL and FORTRAN.  While these languages (no doubt) have some minor
interesting features, the main argument in favor of their use is that
there is such a large base of installed software.]

The first step is to choose compatible data types.  For example,
in our sample FORTRAN procedure (which we will use as the basis for our
assembler routine), we have chosen to use REAL*8 since we know that it
is available in both FORTRAN and Turbo.  The second step is to make the
argument passing compatible.  This can be done by declaring all of the
Turbo Pascal arguments to be variable parameters -- since variable
parameters are passed by pushing the segment:offset of the variable's
address onto the stack, just as FORTRAN does.  Moreover, this is
especially easy in Turbo (as opposed to standard Pascal), since there
is a "typeless" variable parameter declaration in which we don't even
need to specify the variable types:

procedure dotpro(var array1,array2,n,result); external 'dotpro.bin';

All this being done, our sole problem is the NEAR vs. FAR PROC problem.

Here, then, is an assembler routine taking these ideas into
account.  It can be interfaced to FORTRAN if the constant LANGUAGE is
changed to 2, and it can be interfaced to Turbo (with the external
declaration shown above) if LANGUAGE is 0:
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.8087
public   dotpro

code     segment  'code'
assume   cs:code

                                                                        
|  ; Turbo Pascal if the following is zero, FORTRAN if two.  |
|  language equ      0                 ; 0 or 2.             |
|           ife      language                                |
|  dotpro   proc     near              ; Turbo Pascal.       |
|           else                                             |
|  dotpro   proc     far               ; Microsoft FORTRAN.  |
|           endif                                            |
|  result   equ      dword ptr [bp+4+language]               |
|  n        equ      dword ptr [bp+8+language]               |
|  array2   equ      dword ptr [bp+12+language]              |
|  array1   equ      dword ptr [bp+16+language]              |

push     bp
mov      bp,sp
push     ds
push     es

; Get N into CX:
lds      bx,n              ; now DS:BX points to N.
mov      cx,[bx]           ; now CX contains N.

; Initialize 8087:
fldz                       ; load zero into 8087.

; Now, prepare DS:SI to point to array1 and ES:DI to point to array2.
lds      si,array1
les      di,array2

; The main loop:
again:   fld      qword ptr [si]    ; get element of array1.

add      si,8              ; update pointer.
fmul     qword ptr es:[di] ; multiply by element of array2.
add      di,8              ; update pointer.
fadd                       ; add to running sum and pop.
loop     again             ; repeat until done.

; Store result:
lds      bx,result         ; DS:BX => result.
fstp     qword ptr [bx]    ; store it.

; wait to make sure:
fwait
pop      es
pop      ds
pop      bp
ret      16

dotpro   endp
code     ends

end

In actual tests, this routine performs quite well.  I have used it
in both FORTRAN and Pascal, and have compared it to equivalent routines
written in those languages.  Here is benchmark of the three languages,
all using the 8087 coprocessor:
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Time to Take the Dot-Product of Two REAL*8 4000-vectors
LANGUAGE                                          TIME
assembler                                      0.26 seconds

Microsoft FORTRAN                                  0.61 seconds
Turbo Pascal                                     2.06 seconds

Clearly, there is some potential for interfacing 8087 number-crunching
routines to "slow" languages like Microsoft FORTRAN and Turbo Pascal.
In this test, which involves 8000 floating point operations, the 8087
runs at about 0.03 Mflops (1 Mflop= 1 million floating point operations
per second) in the assembler routine, very close to its theoretical
maximum throughput (sometimes quoted as 0.05 Mflops).

Final Words

This is the end of the course, and I hope you have gotten
something out of it, even if it has been necessary to do a lot of work
and cover a lot of details.  Unfortunately, as I have stated so often,
so much of learning assembly language is just practicing and learning
from mistakes, that it is necessary to do a lot of programming.  Also,
since most of the reason for doing assembly language at all on the IBM
PC is simply because we want to get at the low-level features of the
machine, we needed to cover those low-level features.  Unfortunately,
the information needed to do many of these things is spread across many
different books (almost none of it being in our own textbook), so I
felt that it was necessary to present a lot of information, even though
we barely scratched the surface of most topics.  However, as you are
probably aware, full mastery of every topic is not needed to get a lot
of use out of the machine.

Final Final Words

The final projects must be turned in by 8:00 pm., Wednesday, the
14th of August (1985).  Please make some effort to insure that the
program works and is bug-free.

********************************************************************
BURKEY'S LAW:   A program which has not been tested is a program

which does not work.
COROLLARY:  Most people do not test their programs.
********************************************************************
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STUDENT AND INSTRUCTOR RESULTS
SORTING TIMES (PLUS OR MINUS 0.06 SECONDS) FOR VARIOUS

ALGORITHMS AND FILES OF VARIOUS SIZES

   50 LINES  400 LINES  850 LINES
STUDENT ID SORTING ALGORITHM    1K BYTES  13K BYTES  40K BYTES
RSB  QUICK SORT               0.05       0.39       0.77
1392 SHELL SORT               0.05       0.60       1.32
RSB  SHELL SORT               0.06       0.66       1.38
8012 HEAP SORT                0.00       0.66       1.31
RSB  HEAP SORT                0.05       0.71       1.26
4931 SHELL SORT               0.05       0.82       1.71
7758 INSERTION SORT           0.05       4.40      14.39
8868 INSERTION SORT           0.05       4.50      14.94
7003 INSERTION SORT           0.06       4.50      15.00
2939 INSERTION SORT           0.05       4.51      14.94
6192 INSERTION SORT           0.05       4.61      15.54
2377 INSERTION SORT           0.05       4.62      15.55
1173 INSERTION SORT           0.05       4.67      15.55
RSB  INSERTION SORT           0.05       4.99      16.58
8642 INSERTION SORT           0.05       5.05      17.25
RSB  SELECTION SORT           0.17       9.00      34.55
8540 SELECTION SORT           0.22      11.37      45.48
RSB  BUBBLE SORT              0.22      21.25      67.67
DOS  SPOOKY, ISN'T IT?        1.00      32.00     211.00
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TESTING THE ASSEMBLER DOT-PRODUCT ROUTINE
Two results are computed by each program.  R is the dot-product as
given by the assembler routine and S is the dot-product computed by the
high-level language.

{ Pascal version:  set LANGUAGE=0 in DOTPRO.ASM, then use MASM, LINK,
and EXE2BIN to create DOTPRO.BIN.  Declaration of the routine: }

procedure dotpro(var array1,array2,n,result); external 'dotpro.bin';

{ ======================= Main program: ========================== }
const  max=4000;
var    r,s:real;   i,n:integer;   v1,v2:array[1..max] of real;
begin
{ ========== First, fill the arrays with known data: ============= }

for i:=1 to max do begin   v1[i]:=i;   v2[i]:=i+1   end;
{ ==== Compute first in Pascal to make sure of the answer: ======= }

writeln('Now computing in Pascal.');
s:=0;
for i:=1 to max do s:=s+v1[i]*v2[i];

{ ========== Next, do the computation in assembler: ============== }
writeln('Now computing it in assembler.');
n:=max;
dotpro(v1,v2,n,r);

{ ============= Finally, compare the two results: ================ }
writeln('Pascal gives ',s);
writeln('Assembler gives ',r)

end.

C FORTRAN VERSION:  SET LANGUAGE=2 IN DOTPRO.ASM AND THEN ASSEMBLE
C TO GET DOTPRO.OBJ.  NO DECLARATION OF THE ASSEMBLER ROUTINE NEEDED.

C ======================= MAIN PROGRAM: ==========================
$NOFLOATCALLS
$STORAGE:2
$LARGE V1,V2

PARAMETER (MAX=4000)
IMPLICIT REAL*8(P-Z)
DIMENSION V1(MAX),V2(MAX)

C ========== FIRST, FILL THE ARRAYS WITH KNOWN DATA: =============
DO 10 I=1,MAX

V1(I)=I
10         V2(I)=I+1
C === FIRST, COMPUTE IN FORTRAN TO BE SURE OF THE RESULT: ========

WRITE(*,*)'NOW COMPUTING IN FORTRAN'
S=0.0D0
DO 20 I=1,MAX

20         S=S+V1(I)*V2(I)
C ============ NEXT, COMPUTE IT IN ASSEMBLER: ====================

WRITE(*,*)'NOW COMPUTING IN ASSEMBLER'
N=MAX
CALL DOTPRO(V1,V2,N,R)

C =========== FINALLY, COMPARE THE TWO RESULTS: ==================
WRITE(*,*)'FORTRAN GIVES ',S
WRITE(*,*)'ASSEMBLER GIVES ',R
STOP
END
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comment \
An 8087 routine to be used with either Microsoft FORTRAN or with Turbo
Pascal.  The routine takes the dot-product of two double-precision real
vectors, returning a double-precision real result.  The order of the
arguments is ARRAY1, ARRAY2, N, RESULT.  Doubleword addresses are
passed on the stack.   \

.8087
public   dotpro

code     segment  'code'
assume   cs:code

                                                                        
|  ; Turbo Pascal if the following is zero, FORTRAN if two.  |
|  language equ      0                 ; 0 or 2.             |
|           ife      language                                |
|  dotpro   proc     near              ; Turbo Pascal.       |
|           else                                             |
|  dotpro   proc     far               ; Microsoft FORTRAN.  |
|           endif                                            |
|  result   equ      dword ptr [bp+4+language]               |
|  n        equ      dword ptr [bp+8+language]               |
|  array2   equ      dword ptr [bp+12+language]              |
|  array1   equ      dword ptr [bp+16+language]              |

push     bp
mov      bp,sp
push     ds
push     es

; Get N into CX:
lds      bx,n              ; now DS:BX points to N.
mov      cx,[bx]           ; now CX contains N.

; Initialize 8087:
fldz                       ; load zero into 8087.

; Now, prepare DS:SI to point to array1 and ES:DI to point to array2.
lds      si,array1
les      di,array2

; The main loop:
again:   fld      qword ptr [si]    ; get element of array1.

add      si,8              ; update pointer.
fmul     qword ptr es:[di] ; multiply by element of array2.
add      di,8              ; update pointer.
fadd                       ; add to running sum and pop.
loop     again             ; repeat until done.

; Store result:
lds      bx,result         ; DS:BX => result.
fstp     qword ptr [bx]    ; store it.

; wait to make sure:
fwait
pop      es
pop      ds
pop      bp
ret      16

dotpro   endp
code     ends

end


